Advertisement

Wavelet Monte Carlo Methods for the Global Solution of Integral Equations

  • Stefan Heinrich
Conference paper

Abstract

We study the global solution of Fredholm integral equations of the second kind by the help of Monte Carlo methods. Global solution means that we seek to approximate the full solution function. This is opposed to the usual applications of Monte Carlo, where one only wants to approximate a functional of the solution. In recent years several researchers developed Monte Carlo methods also for the global problem (see the references in the introduction).

In this paper we present a new Monte Carlo algorithm for the global solution of integral equations. We use multiwavelet expansions to approximate the solution. We study the behavior of variance on increasing levels, and based on this, develop a new variance reduction technique. For classes of smooth kernels and right hand sides we determine the convergence rate of this algorithm and show that it is higher than those of previously developed algorithms for the global problem. Moreover, an information-based complexity analysis shows that our algorithm is optimal among all stochastic algorithms of the same computational cost and that no deterministic algorithm of the same cost can reach its convergence rate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. K. Alpert. A class of bases in L 2for the sparse representation of integral operators. SIAM J. Math. Anal., 24: 246 – 262, 1993.CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    K. V. Emelyanov and A. M. Ilin. On the number of arithmetic operations, necessary for the approximate solution of Fredholm integral equations of the second kind. Zh. Vychisl Mat. ? Mat, Fiz., 7: 905–910,1967 (in Russian).Google Scholar
  3. 3.
    S. M. Ermakov and G. A. Mikhailov. Statistical Modelling. Nauka, Moscow, 1982 (in Russian).Google Scholar
  4. 4.
    A. S. Frolov and N. N. Chentsov. On the calculation of certain integrals dependent on a parameter by the Monte Carlo method. Zh. Vychisl. Mat. Mat. Fiz., 2(4): 714–717, 1962 (in Russian).Google Scholar
  5. 5.
    J. H. Halton, Sequential Monte Carlo. Proc. Comb. Phil. Soc.., 58: 57 – 78, 1962.CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    J. H. Halton, Sequential Monte Carlo Techniques for the Solution of Linear Systems. J. Sci. Comput. 9,1994.Google Scholar
  7. 7.
    S. Heinrich. Random approximation in numerical analysis. In: K. D. Bierstedt, A. Pietsch, W. M. Ruess, and D. Vogt, editors, Functional Analysis, pages 123–171. Marcel Dekker, 1994.Google Scholar
  8. 8.
    S. Heinrich. Monte Carlo complexity of global solution of integral equations. J. Complexity, 14: 151 – 175, 1998.CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Heinrich. A multilevel version of the method of dependent tests. In: S. M. Ermakov, Y. N. Kashtanov, and V. B. Melas, editors, Proceedings of the 3rd St. Petersburg Workshop on Simulation, pages 31–35. St. Petersburg University Press, 1998.Google Scholar
  10. 10.
    S. Heinrich and P. Mathé. The Monte Carlo complexity of Fredholm integral equations. Math. of Computation, 60: 257 – 278, 1993.CrossRefzbMATHGoogle Scholar
  11. 11.
    M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, Berlin- Heidelberg—New York, 1991.CrossRefzbMATHGoogle Scholar
  12. 12.
    L. Li and J. Spanier. Approximation of Transport Equations by Matrix Equations and Sequential Sampling. Monte Carlo Methods and Applications, 3: 171 – 198, 1997.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    G. A. Mikhailov. Minimization of Computational Costs of Non-Analogue Monte Carlo Methods. World Scientific, Singapore, 1991. Google Scholar
  14. 14.
    S. M. Prigarin. Convergence and optimization of functional estimates in statistical modelling in Sobolev’s Hilbert spaces. Russian J. Numer. Anal. Math. Modelling, 10(4): 325 – 346, 1995.zbMATHMathSciNetGoogle Scholar
  15. 15.
    I. M. Sobol. The use of ω2—distribution for error estimation in the calculation of integrals by the Monte Carlo method. U.S.S.R. Comput. Math. and Math. Phys., 2(2), 717–723, 1962.MathSciNetGoogle Scholar
  16. 16.
    J. Spanier and E. M. Gelbard, Monte Carlo Principles and Neutron Transport Problems. Addison-Wesley, Reading, Massachusetts, 1969.zbMATHGoogle Scholar
  17. 17.
    J. Spanier and L. Li, General Sequential Sampling Techniques for Monte Carlo Simulations: Part I - Matrix Problems. In: H. Niederreiter, P. Hellekalek, G. Larcher, and P. Zinterhof, editors, Monte Carlo and Quasi-Monte Carlo Methods 1996, pages 382–397. Lecture Notes in Statistics 127, Springer, Berlin, 1997.Google Scholar
  18. 18.
    J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity. Academic Press, New York, 1988.zbMATHGoogle Scholar
  19. 19.
    A. V. Voytishek. Asymptotics of convergence of discretely stochastic numerical methods of the global estimate of the solution to an integral equation of the second kind. Sibirsk. Mat. Zh., 35: 728–736, 1994. (in Russian).Google Scholar
  20. 20.
    . V. Voytishek. On the errors of discetely stochastic procedures in estimating globally the solution of an integral equation of the second kind. Russian J. Numer. Anal. Math. Modelling, 11: 71 – 92, 1996.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2000

Authors and Affiliations

  • Stefan Heinrich
    • 1
  1. 1.Fachbereich InformatikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations