Skip to main content
  • 161 Accesses

Abstract

The association between diabetes mellitus and an increased risk for cardiovascular disease (CVD) has been well documented. Among diabetic patients, morbidity and mortality rates from myocardial infarction are increased, as are the risks for recurrent infarction, congestive heart failure, stroke, and peripheral vascular disease; Many efforts have been made in elucidating the relation between the metabolic derangements of diabetes and the increased risk for the development of macrovascular disease Most of the known risk factors that predict large vessel disease in the general population, including dyslipidemia, cigarette smoking, and hypertension have been shown to apply equally in the presence of diabetes and, in general, they can be treated in the same ways, but more aggressively. Overall, about 50 percent of excess heart disease in diabetes can be attributed to associated abnormalities in other known CVD risk factors. However, diabetic status appears to confer risk such that even after correction of other risk factors, the diabetic remains at high risk for macrovascular disease. The excess risk is so high that being diabetic is considered to place a patient in the same risk category as having established coronary and other atherosclerotic disease. The degree of risk is, at least in part, influenced by the degree of glycaemic control. Thus, diabetes may increase CVD risk by both direct and indirect effects.This chapter reviews current concepts of atherogenesis and highlights some of the ways in which diabetes mellitus is thought to accelerate the progress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown MS, Goldstein JL (1986). A receptor-mediated pathway for cholesterol homeostasis. Science 232: 34–47.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee M (1994). Lilly Lecture 1993. Diabetes 43: 836–841.

    PubMed  CAS  Google Scholar 

  • Brownlee M, Vlassara H, Cerami A (1984). Nonenzymatic glycosylation products of collagen covalently trap low-density lipoprotein. Diabetes 34: 938–941.

    Article  Google Scholar 

  • Caprio S, Wong S, Alberti KGMM, King G (1997). Cardiovascular complications of diabetes. Diabetologia 40: B78–B82.

    PubMed  Google Scholar 

  • Chait A, Heinecke JW (1999). Lipoproteins, modified lipoproteins and atherosclerotic vascular disease. In: In: Betteridge DJ, Illingworth DR, Sheperd J (eds). Lipoproteins in health and disease. Arnold, pp 597–611.

    Google Scholar 

  • Chisolm GM, Irwin KC, Penn MS (1992). Lipoprotein oxidation and lipoprotein-induced cell injury in diabetes. Diabetes 41 (suppl 2): 61–66.

    PubMed  CAS  Google Scholar 

  • Davies MJ (1990) A macro and micro view of coronary vascular insult in ischemic heat disease. Circulation 82:1138–1146.

    Google Scholar 

  • Davies MJ, Wolf N, Rowles O, Pepper J (1988). Morphology of the endothelium over atherosclerotic plaques in human coronary arteries. British Heart Journal 60: 459–464.

    Article  PubMed  CAS  Google Scholar 

  • Deupree R, Fields R, McMahan C, and Strong JP (1973). Laboratory Investigation 28:252–262.

    PubMed  CAS  Google Scholar 

  • Faggiotto A, Ross R, Harker L (1984). Studies of hypercholesterolemia in the nonhuman primate. I Changes that lead to fatty streak formation. Arteriosclerosis 4: 232–240.

    Google Scholar 

  • Falk E (1985) Unstable angina with fatal outcome: dynamic coronary thrombosis leading to infarction and/or sudden death. Autopsy evidence of recurrent mural thrombosis with peripheral embolization culminating in total vascular occlusion. Circulation 71: 699–708.

    CAS  Google Scholar 

  • Feener EP, King GL (1997). Vascular dysfunction in diabetes mellitus. Lancet 350 (suppl I): 9–13.

    Google Scholar 

  • Frénais R, Ouguerranm K, Maugeais C, Mahot P, Maugêre P, Krenpf M, Magot T (1997). High-density lipoprotein apolipoprotein Al kinetics in NIDDM: a stable isotope study. Diabetologia 40:578–583.

    Article  PubMed  Google Scholar 

  • Fuster V, Badimon L, Badimon J J, and Chesebro JH (1992). The pathogenesis of coronary artery disease and the acute coronary syndromes (2). New England Journal of Medicine 326:310–318.

    Article  PubMed  CAS  Google Scholar 

  • Haberland ME, Fong D, Cheng L (1988). Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 241: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Hamdan AD, Quist WC, Gagne JB, Feener EP (1996). Angiotensin-converting enzyme inhibition suppresses plasminogen activator inhibator-1 expression in the neointima of balloon-injured rat aorta. Circulation 93:1073–1078.

    PubMed  CAS  Google Scholar 

  • Henriksen T, Mahoney EM, Steinberg D (1981). Enhanced macrophage degradation of low-density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA 78: 6499–6503.

    Article  PubMed  CAS  Google Scholar 

  • Hickes M, Delbridge L, Yue DK, Reeve TS (1988). Catalysis of lipid peroxidation by glucose and glycosylated collagen. Biochem Biophys Res Comm 151: 629–655.

    Google Scholar 

  • Hunt JV, Smith CCT, Wolff SP (1990). Autoxidative glycosylation and possible involvement of peroxides and free radicals in LDL modification by glucose. Diabetes 39:1420–1424.

    Article  PubMed  CAS  Google Scholar 

  • Ishii H, Jirousek M, Ballas L, et al. (1996). Prevention of diabetes-induced vascular dysfunctions by oral PKC isoenzyme-selective inhibitor. Science 272: 728–731.

    Article  PubMed  CAS  Google Scholar 

  • James RW, Pometta D (1990). Differences in lipoprotein subtraction composition and distribution between type 1 diabetic men and control subjects. Diabetes 39:1158–1164.

    Article  PubMed  CAS  Google Scholar 

  • Jonasson L, Holm J, Shalli O, et al. (1986). Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6:131–138.

    Article  PubMed  CAS  Google Scholar 

  • Kahri J, Groop P-H, Viberti GC, Elliott T, Taskinen M-R (1993). Regulation of apolipoprotein A-I containing lipoproteins in IDDM. Diabetes 42:1281–128.

    Article  PubMed  CAS  Google Scholar 

  • Khoo JC, Miller E Pio F, et al. (1992). Monoclonal antibodies against LDL further enhance macrophage uptake of LDL aggregates. Arterioscler Thromb 12:1258–1266.

    Article  PubMed  CAS  Google Scholar 

  • Khoo JC, Miller E, McLoughlin P, Steinberg D (1988). Enhanced macrophage uptake of low-density lipoprotein after self-aggregation. Arteriosclerosis 8: 348–358.

    Article  PubMed  CAS  Google Scholar 

  • Kinball TR, Daniels SR, Khoury PR, Magnotti RA, Turn AM, Dolan LM (1994) Cardiovascular status in young patients with insulin-dependent diabetes mellitus. Circulation 90: 357–361.

    Google Scholar 

  • Knudsen P, Eriksson J, Lahdenperä S, Kahri J, Groop L, Taskinen M-R (1995). Changes of lipolytic enzymes cluster with insulin resistance syndrome. Diabetologia 38: 344–350.

    Article  PubMed  CAS  Google Scholar 

  • Kodama T, Freeman M, Rohrer L, et al. (1990). Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature 343: 531–535.

    Article  PubMed  CAS  Google Scholar 

  • Lewis GF (1997). Fatty acid regulation of very low-density lipoprotein production. Curr Opin Lipidol 8:146–153.

    Article  PubMed  CAS  Google Scholar 

  • Li H, Cybulsky MI, Gimbrone MA Jr, Libby P (1993). An atherogenic diet rapidly induces VCAM-i, a cytokine-regulatable mononuclear leukocyte adhesion molecule in rabbit aortic endothelium. Arterioscler Thromb 13:197–204.

    Article  PubMed  Google Scholar 

  • Malmström R, Packard C, Caslake M, Bedford D, Steward P, Yki-Järvinen H, Sheperd T, Taskinen M-R (1997). Defective regulation of triglyceride metabolism by insulin in the liver in NIDDM. Diabetologia 40: 454–462.

    Article  PubMed  Google Scholar 

  • Nakamura Y, Horii Y, Nishino T, et al. (1993). Immunocytochemical localization of advanced glycosylation end products in coronary atheroma and cardiac tissue in diabetes mellitus. Am J Pathol 143:1649–1656.

    PubMed  CAS  Google Scholar 

  • Nishigaki I, Haghihara M, Tsunekava HT, et al. (1981). Lipid peroxides and atherosclerosis. Biochem Med 25: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Palinski W, Ord V, Plump AS, et al. (1994). Apoprotein A-deficient mice are a model of lipoprotein oxidation in atherogenesis: Demonstration of oxidative-specific epitopes in lesions and high titers of autoantibodies to malondialdehidehydelsine in serum. Arterioscler Thromb 14: 605–616.

    Article  PubMed  CAS  Google Scholar 

  • Palinski W, Rosenfeld ME, Ylä-Herttuala S, et al. (1989). Low density lipoproteins undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86:1372–1376.

    Article  PubMed  CAS  Google Scholar 

  • Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607.

    Article  PubMed  CAS  Google Scholar 

  • Richardson P, Davies MJ, and Born G (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet ii: 941–944.

    Google Scholar 

  • Sato Y, Hotta N, Sakamoto N, et al. (1979). Lipid peroxide level in plasma of diabetic patients. Biochem Med 21:104–107.

    Article  PubMed  CAS  Google Scholar 

  • Seddon AM, Wolf N, LaVille A, et al. (1987). Hereditary hyperlipidemia and atherosclerosis in the rabbit due to overproduction of lipoproteins. II Preliminary report of arterial pathology. Arteriosclerosis 7:113–124.

    CAS  Google Scholar 

  • Sharma K, Jin Y, Guo J, Ziyadeh FN (1996). Neutralization of TGF-beta antibody attenuates kidney hypertrophy and the enhanced extra cellular matrix gene expression in STZ-induced diabetic mice. Diabetes 45: 522–530.

    Article  PubMed  CAS  Google Scholar 

  • Sorbinil Retinopathy Trial Research Group (1993). The sorbinil retinopathy trial: neuropathy results. Neurology 43:1141–1149.

    Google Scholar 

  • Steinberg D (1997) Diabetes and atherosclerosis. In: Ellenberg & Rifkin’s Diabetes Mellitus, 5th Edition, Appeton & Lange, pp 193–207.

    Google Scholar 

  • Steinberg HO, Chaker H, Learning R, Johnson A, Brechtel G, Baron AD. Obesity/insulin resistance is associated with endothelial dysfunction. J Clin Invest 1996; 97: 2601–2610.

    Article  PubMed  CAS  Google Scholar 

  • Syvänne M, Taskinen M-R (1997). Lipids and lipoproteins as coronary risk factors in non-insulin-dependent diabetes mellitus. Lancet 350: 20–23.

    Article  Google Scholar 

  • Taskinen M-R (1992). Quantitative and qualitative lipoprotein abnormalities in diabetes mellitus. Diabetes 41:12–17.

    Article  PubMed  Google Scholar 

  • Taskinen M-R Lahdenperä S, Syvänne M (1996). New insights into lipid metabolism in non-insulin-dependent diabetes mellitus. Ann Med 28: 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Vlassara H (1992). Receptor-mediated interactions of advanced glycosylation endproducts with cellular components within diabetic tissues. Diabetes 41 (suppl2): 52–56.

    Google Scholar 

  • Wells-Knecht MC, Thorpe SR, Baynes JW (1995). Pathways of formation of glycoxidation products during glycation of collagen. Biochemistry 34:15134–15141.

    Article  PubMed  CAS  Google Scholar 

  • Withzum JL, Steinbrecher UP, Kesaniemi YA, Fisher M (1984). Autoantibodies to glucosylated proteins in the plasma of patients with diabetes mellitus. Proc Natl Acad Sci USA 81: 3204–3208.

    Article  Google Scholar 

  • Witzum JL, Mahoney EM, Branks MJ, et al. (1981). Nonenzymatic glycosilation of low-density lipoproteins alters its biological activity. Diabetes 31: 283–291.

    Article  Google Scholar 

  • Wolf N (1999) Pathology of atherosclerosis. In: Betteridge DJ, Illingworth DR, Sheperd J (eds). Lipoproteins in health and disease. Arnold, pp 533–541.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dabelea, D. (2003). Atherogenesis in Diabetes. In: Hâncu, N. (eds) Cardiovascular Risk in Type 2 Diabetes Mellitus. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59352-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59352-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63946-3

  • Online ISBN: 978-3-642-59352-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics