Examples of Relationship of Specific Features of Geological Structure Vs. Man - Made Shocks Occurrence

  • Dana Procházková
Conference paper
Part of the NATO ASI Series book series (ASEN, volume 4)


According to our present knowledge dealing with the earthquake origin as a sudden release of the stress in the lithosphere, mostly in upper parts of the Earth’s crust (h < 10 km), the earthquakes are associated with the shear fracturing of rocks. The shear strength of rocks is related to the ratio of the shear stress along the fault to the normal effective stress across the fault. The effective normal stress is equal to the normal stress minus the pore pressure. It means that the ratio of shear to normal stress increases if rocks are under an initial shear stress and that an increase in fluid pressure can trigger shear failure


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson H. and Jackson J. (1987). Active Tectonics of the Adriatic Region. Geophys. J. R. Astr. Soc., 91: 937–983.CrossRefGoogle Scholar
  2. Batik P., Dornič J. (1983). Map of Selected Photolineations and Their Relation to Gravity Anomalies. In: Vacek et al. (1983):Přehledné prognozni oceněni rudonosnosti českého masivu. Ústfedni ústav geologický, Praha.Google Scholar
  3. Batik P., Dornič J., Lysenko V. (1983). Map of Photolineations in the Bohemian Massif. In: Vacek et al. (1983):Přehledné prognozni oceněni rudonosnosti českého masivu. Ústfedni ústav geologický, Praha.Google Scholar
  4. Bergerat F. (1987). Stress Fields in the European Platform at the Time of Africa - Eurasia Collision. Tectonics, 6. 99–132.CrossRefGoogle Scholar
  5. Blitkovský M. et al. (1982). Map of the Indications of the Gravity Gradients in the Bohemian Massif. Ústředni üstav geologický, Praha.Google Scholar
  6. Gangl G. (1975). Seismotectonic Investigations of the Western Part of the Inneralpine Pannonian Basin (Eastern Alps and Dinarides). In: Proceed. XIV. th Gen. Ass. ESC, Berlin: 409–431.Google Scholar
  7. Grecula P., Roth Z. (1978). Kinematický model Západnich Karpat v souborném řezu (in Czech). Sbor. Geol. Ved, 32, 49–73.Google Scholar
  8. Henningsen D. (1981). Einführüng in die Geology der Bundesrepublik Deutschland. F. Enke Stuttgart.Google Scholar
  9. Kárnik V., Procházková D., Schenk V., Schenková Z., Broudek I. (1988). Seismic Zoning Map - Version 1987. Studia geoph. et geod., 32: 144–150.CrossRefGoogle Scholar
  10. Krs M. (1982). Implication of Statistical Evaluation of Phanerozoic Paleomagnetic Data (Eurasia, Africa). Rozpravy Cs. Akad. Věd, 92: 1–86.Google Scholar
  11. Misař Z. et al. (1983). Geologie čSSR. I. českg masiv. SPN, Praha.Google Scholar
  12. Pavoni N. (1991). Seismotektonik. ETH Erdwissenschaften Heute. Zürich.Google Scholar
  13. Procházková D. (1984). Analýza zemětřeseni ve Stfedni Evropě (in Czech). Doctor’s Thesis. Geoph. Inst. Czechosl. Acad. Sci., Praha.Google Scholar
  14. Procházková D. (1993 a). Earthquake Pattern in Central Europe. Acta Universitatis Carolinae - Mathematics et Physics. 34: 3–66.Google Scholar
  15. Procházková D. (1993 b). Catalogue of Earthquakes. Bohemia and Moravia. 1981–1989. Ministerstvo hospodářstvi ČR, Praha.Google Scholar
  16. Procházková D. (1994). Survey of investigations into artificially triggered seismicity. Pageoph (in print).Google Scholar
  17. Procházková D. and Drimnel J. (1989). Fault - Plane Solutions of the Three Strongest Earthquakes in the Semmering Region in 1984. Proc. ESC Sofia 1988, Sofia: 263–270.Google Scholar
  18. Procházková D. and Roth Z. (1993). Complex Investigation of Earthquakes in Central Europe. In: Environmental Monitoring and Adjacent Problems. Czech Ecol. Inst. and Ministry of Environ., Praha: 287–349.Google Scholar
  19. Röhlich P., Stovičková N. (1968). Die Tiefenstörungs - Tektonik und deren Entwicklung in zentralen Teil der Böhmischen Masse. Geologie, 17, 670–674.Google Scholar
  20. Roth Z. (1987). Kinematic Analysis of the Mutual Position of the Cretaceous Paleo magnetic Poles of the European epiVariscan and African Platforms with Respect to the Alpine Movements in the Mediteranean Alpides. Mineral. Slov., 19: 193–202.Google Scholar
  21. Roth Z., Zeman A. (1988). Proposal for the Definition of the Bohemian Massif and for Its Division Into Tectonical Blocks on the Territory ofthe ČSSR. Zeitsch. geol. Wiss., 16, 331–334.Google Scholar
  22. Veselá M. (1976). The Jihlava Furrow in the Geological Development of the Jihlava Environs. Sbor. geol. Věd., ř. G, 28, 189–205.Google Scholar
  23. Zeman J. (1982). Geological Map of the Basement of the Ostrava Karviná Coal Basin. 1: 50000.Google Scholar
  24. Ziegler P.A. (1982). Geological Atlas of Western and Central Europe. Shell, Int. Petrol M., Den Haag.Google Scholar
  25. Ziegler P.A. (1984). Caledonian and Hercynian Crustal Consolidation of Western and Central Europe - A Working Hypothesis. Geologie en Mijnbouw, 63: 93–108.Google Scholar

Copyright information

© Springer-VerlagBerlin Heidelberg 1995

Authors and Affiliations

  • Dana Procházková
    • 1
  1. 1.State Office for Nuclear SafetyCzech Republic

Personalised recommendations