Comparing ICU Populations: Background and Current Methods

  • J. E. Zimmerman
  • E. A. Draper
  • D. P. Wagner
Part of the Update in Intensive Care Medicine book series (volume 35)

To evaluate critical care services, outcome data must be collected and then compared to a performance benchmark or standard. The outcomes that are examined include mortality, complication rates, hospital and ICU length of stay, staffing level, or the use of treatment resources. A simple comparison of these outcomes, however, is frequently unsatisfactory because the characteristics of patients treated in different ICUs are not the same. In addition, the ICUs that are compared will often differ because of variations in hospital referral patterns, teaching status, and location. To meaningfully evaluate ICU performance, therefore, data comparisons must be adjusted for variations in both patient and hospital characteristics.


Hospital Mortality Interobserver Reliability Glasgow Coma Score Simplified Acute Physiology Score Lead Time Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Carson SS, Stocking C, Podsadecki T, et al (1996) Effects of organizational change in the medical intensive care unit of a teaching hospital: a comparison of “open” and “closed” formats. JAMA 276:322–328PubMedCrossRefGoogle Scholar
  2. 2.
    Manthous CA, Amoateng YA, Al-Kharrat T, et al (1997) Effects of a medical intensivist on patient care in a community teaching hospital. Mayo Clin Proc 72:391–399PubMedCrossRefGoogle Scholar
  3. 3.
    Engleman RM (1996) Mechanisms to reduce hospital stays. Ann Thorac Surg 61: S26–S29CrossRefGoogle Scholar
  4. 4.
    Cheng DCH, Karske J, Peniston C, et al (1996) Early tracheal extubation after coronary artery bypass graft surgery reduces costs and improves resource use. Anesthesiology 85:1300–1310PubMedCrossRefGoogle Scholar
  5. 5.
    Baker SP, O’Neil B, Haddun W, Long WB (1974) The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma 14:187–196PubMedCrossRefGoogle Scholar
  6. 6.
    Feller I, Tholen D, Cornell RG (1980) Improvements in burn care, 1965 to 1979. JAMA 244:2074–2078PubMedCrossRefGoogle Scholar
  7. 7.
    Teasdale G, Jennett B (1974) Assessment of coma and impaired consciousness: a practical scale. Lancet ii: 81–84CrossRefGoogle Scholar
  8. 8.
    Siegel JH, Goldwyn RM, Friedman HP (1971) Patterns and processes in the evaluation of human septic shock. Surgery 70:232–240PubMedGoogle Scholar
  9. 9.
    Shoemaker WP, Chang P, Czer L (1979) Cardiovascular monitoring in post-operative patients. Crit Care Med 7: 237–241PubMedCrossRefGoogle Scholar
  10. 10.
    Teres D, Brown RB, Lemeshow S. (1982) Predicting mortality of intensive care unit patients: the importance of coma. Crit Care Med 10: 86–94PubMedCrossRefGoogle Scholar
  11. 11.
    Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE (1981) APACHE — acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med 9: 591–597PubMedCrossRefGoogle Scholar
  12. 12.
    Knaus WA, Draper EA, Wagner DP, et al (1982) Evaluating outcome from intensive care: a preliminary multihospital comparison. Crit Care Med 10:491–496PubMedCrossRefGoogle Scholar
  13. 13.
    Knaus WA, LeGall JR, Wagner DP, et al (1982) A comparison of intensive care in the U.S.A. and France. Lancet ii: 642–646CrossRefGoogle Scholar
  14. 14.
    Wagner DP, Draper EA, Abizanda-Campos R, et al (1984) Initial international use of APACHE an acute severity of disease measure. Med Decis Making 4: 297–313PubMedCrossRefGoogle Scholar
  15. 15.
    Knaus WA, Draper EA, Wagner DP, Zimmerman JE (1985) APACHE II — a severity of disease classification system. Crit Care Med 13: 818–829PubMedCrossRefGoogle Scholar
  16. 16.
    Le Gall JR, Loirat P, Alperovitch A, et al (1984) A simplified acute physiology score for ICU patients. Crit Care Med 12: 975–977PubMedCrossRefGoogle Scholar
  17. 17.
    Lemeshow S, Teres D, Pastides H, Avrunin JS, Gage RW (1985) A method for predicting survival and mortality of ICU patients using objectively derived weights. Crit Care Med 13: 519–525PubMedCrossRefGoogle Scholar
  18. 18.
    Escarce JJ, Kelly MA (1990) Admission source to the medical intensive care unit predicts hospital death independent of APACHE II score. JAMA 264:2389–2394PubMedCrossRefGoogle Scholar
  19. 19.
    Borlase BC, Baxter JK, Kenney PR, Forse RA, Benotti PN, Blackburn GL (1991) Elective intra-hospital admissions versus acute interhospital transfers to a surgical intensive care unit: cost and outcome prediction. J Trauma. 31: 915–919PubMedCrossRefGoogle Scholar
  20. 20.
    Dragsted L, Jorgenson J, Jensen NH, et al (1989) Interhospital comparisons of patient outcome from intensive care: importance of lead time bias. Crit Care Med 17:418–422PubMedCrossRefGoogle Scholar
  21. 21.
    Rowan KM, Kerr JH, Major E, McPherson K, Vessey MD (1993) Intensive Care Society’s study in Britain and Ireland — II: Outcome comparisons of intensive care units after adjustment for case mix by the American APACHE II method. Br Med J 307:977–981CrossRefGoogle Scholar
  22. 22.
    Jacobs S, Chang RWS, Lee B, Lee B (1988) Audit of intensive care: a 30 month experience using the APACHE II severity of disease classification system. Intensive Care Med 14:567–574PubMedCrossRefGoogle Scholar
  23. 23.
    Sirio Ca, Tajimi K, Tase C, et al (1992) An initial comparison of intensive care in Japan and the United States. Crit Care Med 20:1207–1215CrossRefGoogle Scholar
  24. 24.
    Knaus WA, Wagner DP, Draper EA, et al (1991) The APACHE III prognostic system. Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100:1619–1636.PubMedCrossRefGoogle Scholar
  25. 25.
    Lemeshow S, Teres D, Klar J, Avrunin JS, Gehlbach SH, Rappoport J (1993) Mortality probability models (MPM II) based on an international cohort of intensive care unit patients. JAMA 270: 2478–2486PubMedCrossRefGoogle Scholar
  26. 26.
    Le Gall JR, Lemeshow S, Saulnier F (1993) A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 270:2957–2963PubMedCrossRefGoogle Scholar
  27. 27.
    Sirio CA, Shepardson LB, Rotondi AJ, et al (1999) Community-wide assessment of intensive care outcomes using a physiologically based prognostic measure. Chest 115:793–801PubMedCrossRefGoogle Scholar
  28. 28.
    Zimmerman JE, Wagner DP, Draper EA, Wright L, Alzola C, Knaus WA (1998) Evaluation of acute physiology and chronic health evaluation III predictions of hospital mortality in an independent database. Crit Care Med 26:1317–1326PubMedCrossRefGoogle Scholar
  29. 29.
    Pappachan JV, Millar B, Bennett D, Smith GB (1999) Comparison of outcome from intensive care admission after adjustment for case mix by the APACHE III prognostic system. Chest 115:802–810PubMedCrossRefGoogle Scholar
  30. 30.
    Beck DH, Taylor BL, Millar B, Smith GB (1997) Prediction of outcome from intensive care: a prospective cohort study comparing acute physiology and chronic health evaluation II and III prognostic systems in a United Kingdom intensive care unit. Crit Care Med 25:9–15PubMedCrossRefGoogle Scholar
  31. 31.
    Bastos PG, Sun X, Wagner DP, Knaus WA, Zimmerman JE, The Brazil APACHE III Study Group (1996) Application of the APACHE III prognostic system in Brazilian intensive care units: a prospective multicenter study. Intensive Care Med 22:564–570PubMedCrossRefGoogle Scholar
  32. 32.
    Markgraf R, Deutschinoff G, Pientka L, Schölten T (2000) Comparison of acute physiology and chronic health evaluation (APACHE II and III) and simplified acute physiology score (SAPS II): a prospective cohort study evaluating these methods to predict outcome in a German interdisciplinary intensive care unit. Crit Care Med 28:26–33PubMedCrossRefGoogle Scholar
  33. 33.
    Apolone G, Bertolini G, D’Amico R, et al (1996) The performance of SAPS II in a cohort of patients admitted to 99 Italian ICUs: results from GiViTI. Intensive Care Med 22:1368–1378PubMedCrossRefGoogle Scholar
  34. 34.
    Moreno R, Morais P (1997) Outcome prediction in intensive care: results of a prospective, multicenter, Portuguese study. Intensive Care Med 23:177–186PubMedCrossRefGoogle Scholar
  35. 35.
    Metnitz PGH, Valentin A, Vesely H, et al (1999) Prognostic performance and customization of the SAPS II: results of a multicenter Austrian study. Intensive Care Med 25:192–197PubMedCrossRefGoogle Scholar
  36. 36.
    Moreno R, Miranda DR, Fidler V, Schilfgaarde RV (1998) Evaluation of two outcome prediction models on an independent database. Crit Care Med 26:50–61PubMedCrossRefGoogle Scholar
  37. 37.
    Nouira S, Roupie E, El Atrouss S, et al (1998) Intensive care use in a developing country: a comparison between a Tunisian and a French unit. Intensive Care Med 24:1144–1151PubMedCrossRefGoogle Scholar
  38. 38.
    Nouira S, Belghith M, Elatrous S, et al (1998) Predictive value of severity scoring systems: comparison of four models in Tunisian adult intensive care units. Crit Care Med 26:852–859PubMedCrossRefGoogle Scholar
  39. 39.
    Vanderschuern S, Weerdt A, Malbrain M, et al (2000) Thrombocytopenia and prognosis in intensive care. Crit Care Med 28:1871–1876CrossRefGoogle Scholar
  40. 40.
    Hamel MB, Goldman L, Teno J, et al (1995) Identification of comatose patients at high risk for death or severe disability. JAMA 273:1842–1848PubMedCrossRefGoogle Scholar
  41. 41.
    Knaus WA, Wagner DP, Zimmerman JE, Draper EA. (1993) Variations in mortality and length of stay in intensive care units. Ann Intern Med 118:753–761PubMedGoogle Scholar
  42. 42.
    Borlase BC, Baxter JK, Benotti PN, et al (1991) Surgical intensive care unit resource use in a specialty referral hospital: I. Predictors of early death and cost implications. Surgery 109:687–693PubMedGoogle Scholar
  43. 43.
    Porath A, Eldar N, Harman-Bohem I, Gurman G (1994) Evaluation of the APACHE II scoring system in an Israeli intensive care unit. Isr J Med Sci 30:514–520PubMedGoogle Scholar
  44. 44.
    Boyd O, Grounds RM (1993) Physiological scoring systems and audit. Lancet 341:1573–1574PubMedCrossRefGoogle Scholar
  45. 45.
    Goldhill DR Sumner A (1998) Outcome of intensive care patients in a group of British intensive care units. Crit Care Med 26:1337–1345CrossRefGoogle Scholar
  46. 46.
    Seneff MG, Wagner DP, Thompson D, Honeycutt C, Silver M (2000) The impact of long term actue care facilities on the outcome and cost of care for patients undergoing prolonged mechanical ventilation. Crit Care Med 28: 342–350PubMedCrossRefGoogle Scholar
  47. 47.
    Jayes RL, Zimmerman JE, Wagner DP, Knaus WA (1996) Variations in the use of do-not resuscitate orders in ICUs. Chest 110:1332–1339PubMedCrossRefGoogle Scholar
  48. 48.
    Pendergrast TJ, Luce JM (1997) Increasing incidence of witholding and withdrawal of life support for the critically ill. Am J Respir Crit Care 155:15–20Google Scholar
  49. 49.
    Egol A, Willmitch B (1998) Witholding and withdrawing care affects severity adjusted outcome data. Crit Care Med 26:A25 (Abst)Google Scholar
  50. 50.
    Zhu BP, Lemeshow S, Hosmer DW, Klar J, Avrunin J, Teres D (1996) Factors affecting the performance of the models in the mortality probability model II system and strategies of customization: a simulation study. Crit Care Med 24:57–63PubMedCrossRefGoogle Scholar
  51. 51.
    Teres D, Lemeshow S (1999) When to customize a severity model. Intensive Care Med 25:140–142PubMedCrossRefGoogle Scholar
  52. 52.
    Justice AC, Covinsky KE, Berlin JA (1999) Assessing the generalizability of prognostic information. Ann Intern Med 130:515–524PubMedGoogle Scholar
  53. 53.
    Chen LM, Martin CM, Morrison TL, Sibbald WJ (1999) Interobserver variability in data collection of the APACHE II score in teaching and community hospitals. Crit Care Med 27:1999–2004PubMedCrossRefGoogle Scholar
  54. 54.
    Holt AW, Bury LK, Bersten AD, Skowronski GA, Vedig AE (1992) Prospective evaluation of residents and nurses as severity score data collectors. Crit Care Med 20:16898–1691CrossRefGoogle Scholar
  55. 55.
    Rosenthal GE, Harper DL (1994) Cleveland health quality choice: a model for collaborative community based outcomes assessment. J Comm J Qual Improv 20:425–442Google Scholar
  56. 56.
    Langham J, Goldfrad C, Rowan K (1998) Can case mix adjustment methods be replicated directly from the publication. Intensive Care Med 24 (Suppl 1): S23 (Abst)Google Scholar
  57. 57.
    Bosman RJ, Oudemans van Straaten HM, Zandstra DF (1998) The use of intensive care information system alters outcome prediction. Intensive Care Med 24:953–958PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • J. E. Zimmerman
  • E. A. Draper
  • D. P. Wagner

There are no affiliations available

Personalised recommendations