Advertisement

Fasermeßtechnik und Fasercharakterisierung

  • E. Brinkmeyer

Zusammenfassung

Mit dem Voranschreiten der Komponentenentwicklung für die Optische Nachrichtentechnik — bereits dargestellt in vorangehenden und ergänzt in nachfolgenden Kapiteln — gehen Fortschritte in den zugehörigen Meß- und Prüfverfahren einher. Auf dem Feld der Optischen Nachrichtentechnik, wie überall in den Ingenieurswissenschaften, hängen Innovationen nicht zuletzt von der Fähigkeit ab, präzise Messungen an den Entwicklungsobjekten durchführen zu können. In dem vorliegenden Kapitel über Fasermeßtechnik und Fasercharakterisierung werden Methoden behandelt zur Feststellung von Strukturdaten, zur Bestimmung von Eigenschaften der ausbrei tungsfähigen Wellenfelder und zur Charakterisierung von Fasern als Übertragungsmedium. Ferner werden Meßmethoden für faseroptische Komponenten diskutiert. Diese Methoden sind von Bedeutung sowohl zur Kontrolle der Herstellungsprozesse wie auch zur Bereitstellung von Daten für den Faser-Nutzer. An mehreren Stellen dieses Kapitels wird Bezug genommen auf einschlägige Empfehlungen von Normungsgremien, insbesondere auf ITU-Vorschriften über Messungen an Einmodenfasern (ITU-T G.650) und an Vielmodenfasern (ITU-T G.651).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Stewart, W.J.: A new technique for measuring the refractive index profile of graded optical fibers. In: International Conference on Integrated Optics and Optical fiber communication (IOOC), Tokyo, 1977. paper C2-2Google Scholar
  2. [2]
    White, K.I.: Practical application of the refracted near-field technique for the measurement of optical fiber refractive index profiles. In: Opt. and Quantum Electron. 11 (1979), S. 185–196CrossRefGoogle Scholar
  3. [3]
    Marcuse, D.: Principles of optical fiber measurements. Academic Press, 1981Google Scholar
  4. [4]
    Eickhoff, W.; Weidel, E.: Measuring method for the refractive index profile of optical glass fibers. In: Opt. and Quantum Electron. (1975), S. 109–113Google Scholar
  5. [5]
    Sladen, F.M.E.; Payne, D.N.; Adams, M.J.: Determination of optical fiber refractive index profiles by a near-field scanning technique. In: Appl Phys. Lett. 28 (1976), S. 255–258CrossRefGoogle Scholar
  6. [6]
    Saunders, M.J.; Gardner, W.E.: Nondestructive interferometric measurement of the delta and alpha of clad optical fibers. In: Appl. Opt. 16 (1977), S. 2368–2371CrossRefGoogle Scholar
  7. [7]
    Brinkmeyer, E.: Refractive-Index profile determination of optical fibers from the diffraction pattern. In: Appl. Opt. 16 (1977), S. 2802–2803CrossRefGoogle Scholar
  8. [8]
    Presby, H.M.: Rapid automatic index profiling of whole fiber samples. In: Bell Syst. Tech. J. 58 (1979), S. 883CrossRefGoogle Scholar
  9. [9]
    Kim, K.S. et al.: Measurement of the nonlinear index of silica-core and dispersion-shifted fibers. In: Opt. Lett. 19 (1994). S. 257–259CrossRefGoogle Scholar
  10. [10]
    Stolen, R.H. et al.: Measurement of the nonlinear refractive index of long dispersion-shifted fibers by selfphase modulation at 1.55 μm. In: J. Lightwave Techn. (1998), S. 1006–1012Google Scholar
  11. [11]
    Pringent, L.; Hamide, J.P.: Measurement of fiber nonlinear Kerr coefficient by four-wave mixing. In: IEEE Photon. Technol. Lett. (1993), S. 1092–1095Google Scholar
  12. [12]
    Srivastava, R.; Franzen, J.P.: Single-mode fiber characterization/National Bureau of Standards Report. 1985. -ForschungsberichtGoogle Scholar
  13. [13]
    Franzen, D.L.; Srivastava, R.: Determining the effective cutoff wavelength of single-mode fibers: an interlaboratory comparison. In: J. Lightwave Techn. (1985), S. 1073–1077Google Scholar
  14. [14]
    Renner, H.: Reliability of the bending technique for measuring the effective cut-off wevelength in depressed-c1addin fibres. In: International Journal of Optoelectronics 7 (1992), S. 425–428Google Scholar
  15. [15]
    Murakami, Y.; Kawana, A., Tsuchiya, H.: Cutoff wavelength measurements of single-mode optical fibers. In: Appl. Opt. 18 (1979), S. 1101–1105CrossRefGoogle Scholar
  16. [16]
    Millar, C.A.: Direct method of determining equivalent-step-index profiles for monomode fibers. In: Electron. Lett. 17 (1981), S. 458–460CrossRefGoogle Scholar
  17. [17]
    Streckert, J.: New method for measuring the spot size of single mode fibers. In: Opt. Lett. 5 (1980), S. 505–506CrossRefGoogle Scholar
  18. [18]
    Brinkmeyer, E.; Heckmann, S.: Cutoff wavelength determination in single-mode fibers by mode interference. In: Opt. Lett. 9 (1984), S. 28–30CrossRefGoogle Scholar
  19. [19]
    Brinkmeyer, E.: Profile-independent representation of near-and far-field charakteristics of single-mode fibers and its use for the determination of fiber parameters. In: Proc. of the 5th European Conference on Optical Communication (ECOC), 1979Google Scholar
  20. [20]
    Neumann, E.-G.: Single-mode fibers. Berlin: Springer, 1988CrossRefGoogle Scholar
  21. [21]
    Anderson, W. T. et al.: Mode-field diameter measurements for single-mode fibers with non-Gaussian field profiles. In: J. Lightwave Techn. 5 (1987), S. 211–217CrossRefGoogle Scholar
  22. [22]
    Pask, C.: Physical interpretation of Petermann’s strange spot size for single-mode fibers. In: Electron. Lett. 20 (1984),S. 144–145CrossRefGoogle Scholar
  23. [23]
    Samson, P.J.: Far-field techniques for the characterization of single-mode fibers. In: Opt. and Quantum Electron. 18 (1986), S. 5–22CrossRefGoogle Scholar
  24. [24]
    Saravanos, S.; Lowe, R.S.: New approach for determining non-Gaussian mode fields of single-mode fibers from measurements in the far-field. In: Electron. Lett. 21 (1985), S. 898–899CrossRefGoogle Scholar
  25. [25]
    Takada, K.; Noda, J.; Ulrich, R.: Precision measurement of modal birefringence of highly birefringent fibers by periodic lateral force. In: Appl. Opt. 24 (1985), S. 4387–4391CrossRefGoogle Scholar
  26. [26]
    Eckhardt, R.; Ulrich, R.: Mode-beating spectroscopy in an few-mode optical guide. In: Appl. Phys. Lett. 63 (1993),S. 284–286CrossRefGoogle Scholar
  27. [27]
    Barnoski, M.K.; Jensen, S.M.: Fiber waveguides; a novel technique for investigating attenuation characteristics. In: Appl. Opt. 15 (1976), S. 2112–2115CrossRefGoogle Scholar
  28. [28]
    Gold, M.P.: Design of long-range single-mode OTDR. In: J. Lightwave Techn. 3 (1985), S. 39–46CrossRefGoogle Scholar
  29. [29]
    Neumann, E.G.: Analysis of the backscattering method for testing optical fiber cables. In: AEO 34 (1980), S. 157–160Google Scholar
  30. [30]
    Brinkmeyer, E.: Analysis of the backscattering method for single-mode optical fibers. In: J. Opt. Soc. Am. 70 (1980), S. 1010–1012CrossRefGoogle Scholar
  31. [31]
    Marcuse, D.: Loss analysis of single-mode fiber splices. In: Bell Syst. Tech. J. 56 (1977), S. 703–718CrossRefGoogle Scholar
  32. [32]
    Brinkmeyer, E.: Forward-backward transmission in birefringent single-mode fibers: interpretation of polarization-sensitive measurements. In: Opt. Lett. 6 (1981), S. 575–577CrossRefGoogle Scholar
  33. [33]
    Mollenauer, L.F.; Mamyshev, P.V.; Neubelt, M.J.: Method for facile and accurate measurement of optical fiber dispersion maps. In: Opt. Lett. 21 (1996), S. 1724–1726CrossRefGoogle Scholar
  34. [34]
    Brinkmeyer, E.; Streckert, J.: Reduction of polarization sensitivity in optical domain refiectometers for single-mode fibers. In: J. Lightwave Techn. 4 (1986), S. 513–515CrossRefGoogle Scholar
  35. [35]
    Ghafoori-Shiraz, H.; Okoshi, T.: Fault location in optical fibers using optical frequency domain refiectometry. In: J. Lightwave Techn. 3 (1986), S. 316–322CrossRefGoogle Scholar
  36. [36]
    Nazarathy, M. et al.: Real-time long range complementary correlation optical domain refiectometer. In: J. Lightwave Techn. 7 (1989), S. 24–37CrossRefGoogle Scholar
  37. [37]
    Healey, P.; Malyon, D.J.: OTDR in single mode fibre at 1.5 μm using heterodyne detection. In: Electron. Lett. 18 (1982), S. 862–863CrossRefGoogle Scholar
  38. [38]
    Rybach, J.; Heckmann, S.; Fuchs, M.; Brinkmeyer, E.: Heterodyne-OTDR: The long-wavelength long range solution: In: Proc. Intern. Wire and Cable Symp., 1987, S. 77–84Google Scholar
  39. [39]
    Costa, B. et al.: Phase shift technique for measurement of chromatic dispersion in optical fibers using LED’s. In: IEEE J. Quantum Electron. 18 (1982), S. 1509–1515CrossRefGoogle Scholar
  40. [40]
    Costa, B.; Puelo, M.; Vezzoni, E.: High dynamic chromatic dispersion measurement in single-mode fibers. In: Proc. of the 10th European Conference on Optical Communication (ECOC), 1984, S. 72–73Google Scholar
  41. [41]
    Cohen, L.G.: Comparision of single-mode fiber dispersion measurement techniques. In: J. Lightwave Techn. 3 (1985), S. 958–966CrossRefGoogle Scholar
  42. [42]
    Christensen, B. et al.: Simple dispersion measurement technique with high resolution. In: Electron. Lett. 29 (1993), S. 132–133CrossRefGoogle Scholar
  43. [43]
    Thevenaz, L.; Pellaux, J.; von der Weid, J.P.: All-fiber interferometer for chromatic dispersion measurements. In: J. Lightwave Techn. 5 (1988), S. 1–7CrossRefGoogle Scholar
  44. [44]
    Sansonetti, P.: Modal dispersion in single-mode fibers: simple approximation issued from Mode spot size spectral behaviour. In: Electron. Lett. 18 (1982), S. 647–648CrossRefGoogle Scholar
  45. [45]
    Buckland, E.L.; Nishimura, M.: Measurement of wavelength variation of mode radius using far-field pattern method. In: Electron. Lett. 21 (1985), S. 1149–1151CrossRefGoogle Scholar
  46. [46]
    Nakajima, K.; Ohashi, M.; Tateda, M.: Chromatic dispersion distribution measurement along a single-mode optical fiber. In: J. Lightwave Techn. 7 (1998), S. 1095–1101Google Scholar
  47. [47]
    Heffner, B.L.: Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis. In: IEEE Photon. Technol. Lett. 4 (1992), S. 1066–1068CrossRefGoogle Scholar
  48. [48]
    Poole, C.D.; Favin, D.L.: Polarization-mode dispersion measurements based on transmission spectra through a polarizer. In: J. Lightwave Techn. 12 (1994), S. 917–929CrossRefGoogle Scholar
  49. [49]
    Gisin, N.; von der Weid, J.P.; Pellaux, J.P.: Polarization mode dispersion of short and long single-mode fibers. In: J. Lightwave Techn. 9 (1991), S. 821–827CrossRefGoogle Scholar
  50. [50]
    McGoldrick, E. et al.: Optical characterization of arsenic-doped silica-on-silicon waveguides using femtosecond optical time-domain reflectometry techniques. In: Opt. Lett. 15 (1990), S. 1354–1356CrossRefGoogle Scholar
  51. [51]
    Youngquist, R. C.; Carr, S.; Davies, D.E.N.: Optical coherence domain reflectometry: a new optical evaluation technique. In: Opt. Lett. 12 (1987), S. 158–160CrossRefGoogle Scholar
  52. [52]
    Danielson, B.L.; Whittemberg, C.D.: Guided wave reflectometry with micrometer resolution. In: Appl. Opt. 26 (1987), S. 2836–2842CrossRefGoogle Scholar
  53. [53]
    Takada, K. et al.: High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fiber source and erbium doped power amplifier. In: Electron. Lett. 29 (1993), S. 365–367CrossRefGoogle Scholar
  54. [54]
    Kohlhaas, A.; Frömchen, C.; Brinkmeyer, E.: High-resolution OCDR for testing integrated-optical waveguides. In: J. Lightwave Techn. 9 (1991), S. 1493–1502CrossRefGoogle Scholar
  55. [55]
    Sorin, W.V.; Baney, D.M.: Measurement of Rayleigh backscattering at 1.55 μm with 32 μm spatial resolution. In: IEEE Photon. Technol. Lett. 4 (1992), S. 374–376CrossRefGoogle Scholar
  56. [56]
    Glombitza, U.; Brinkmeyer, E.: Coherent frequency-domain reflectometry for characterization of singlemode integrated-optical waveguides. In: J. Lightwave Techn. 8 (1993), S. 1377–1384CrossRefGoogle Scholar
  57. [57]
    Mussi, G. et al.: 152.5 dB sensitivity high dynamic range optical frequency-domain reflectometry. In: Electron. Lett. 32 (1996), S. 926–927CrossRefGoogle Scholar
  58. [58]
    Iizuka, K.; Fujii, S.: A fault locator for integrated optics. In: 8th Optical Fiber Sensor’s Conference, Monterey, 1992Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • E. Brinkmeyer

There are no affiliations available

Personalised recommendations