Advertisement

Herstellungsverfahren von Lichtwellenleitern

  • K. Kemeter

Zusammenfassung

Die Herstellung von Lichtwellenleitern (LWL) aus Glas wurde in den 70er und 80er Jahren erforscht und bis zur Produktionsreife entwickelt. Der wesentliche technologische Durchbruch wurde in dieser Zeit mit der Verbesserung des Dampfabscheide-Prozesses erreicht. Er erlaubt es, hochreines Glas mit großer Präzision herzustellen, sowohl hinsichtlich seiner molekularen Zusammensetzung als auch seiner geometrischen Eigenschaften. Seither wurden weltweit mehr als 200 Millionen Kilometer Lichtwellenleiter aus Glas für die Telekommunikation installiert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Vandewoestine, R. V. und Morrow, A. J. 1986, Developments in Optical Waveguide Fabrication by the Outside Vapor Deposition Process, J. Lightwave Techn. LT-4, 1020–1025CrossRefGoogle Scholar
  2. [2]
    Keck, D. R, Schultz, P. C. (1973), US Patent 3711262, Jan. 16Google Scholar
  3. [3]
    Keck, D. R, Schultz, P. C., Zimar, F. (1973), US Patent 3737292, June 5Google Scholar
  4. [4]
    Keck, D. R, Schultz, P. C., Zimar, F. (1974), US Patent Re 28029, June 4Google Scholar
  5. [5]
    Schultz, P. C. (1979), Vapor Phase Materials and Processes for Glass Optical Waveguides, in: Fiber Optics: Advances in Research and Development, Hrsg.: B. Bendow, S. Mitra, Plenum Press, N. Y., 3–31CrossRefGoogle Scholar
  6. [6]
    Blankenship, M. G., und Deneka, C. W. (1982), The Outside Vapor Deposition Method of Fabricating Optical Waveguide Fibers, IEEE Journ. of Quantum Electronics, Vol. QE-18, No. 10, 1418–1423CrossRefGoogle Scholar
  7. [7]
    Scherer, G. W. (1977), Sintering of Low-Density Glasses, J. Am. Ceram. Society 60, 236–246CrossRefGoogle Scholar
  8. [8]
    Scherer, G. W. (1979), Sintering Inhomogeneous Glasses: Application to Optical Waveguides, J. NonCryst. Solids 34, 239–256CrossRefGoogle Scholar
  9. [9]
    Izawa, T., Kobayashi, S., Sudo, S., und Hanawa, F. (1977), Continuous Fabrication of High Silica Fiber Preform, Int. Conf. Integrated Opt. Opt. Fiber Communi. (IOOC), Tokyo, Japan, 375–378Google Scholar
  10. [10]
    Niizeki, N. (1981), Recent Progress in Glass Fibers for Optical Communication, J. Appl. Phys. 20 (8), 1347–1360CrossRefGoogle Scholar
  11. [11]
    F. P. Kapron, D. R Keck, und R. D. Maurer (1970), Appl. Phys. Lett. 17, 423–425CrossRefGoogle Scholar
  12. [12]
    Küppers, D., Lydtin, H. (1977), The Preparation of Optical Waveguides by Means of CVD-techniques, 6th Int. Conf. Chem. Vapor Dep. Proc., 461–476Google Scholar
  13. [13]
    Glodis, P. F., Gridley, C. F., Flegal, W. M., Klein, A. A., Jablonowski, D. P., Kalish, D., Sorby, A., Damsgaard, H., Knudsen, G., Schaper, H., Treber, N., Fabian, H., Schultz, P. C. (1994), The Application of Synthetic Silica Tubing for Large Preform Manufacture using MCVD, Int. Wire and Cable Symp. 1994, S. 105–113Google Scholar
  14. [14]
    van Bergen, A. H., und Breuls, T. (1992), Large, all synthetic, PCVD Preform Manufacturing, EFOC/LAN Conf. Proc., 220–224Google Scholar
  15. [15]
    van Bergen, A. H., und Breuls, T. (1998), PCVD: The Ultimate Technology for Production of High Bandwidth Multimode Fibres, Int. Wire and Cable Symp. 1998, 66–71Google Scholar
  16. [16]
    Carratt, M., Walker, S. (1994), MCVD-Plasma Process for Manufacturing Single-mode Optical Fibers for Terrestrial Applications, Electrical Communication, 1. Q. 1994, 11–14Google Scholar
  17. [17]
    Kar, G. (1985), Optical Waveguides: Fabrication and Drawing Standards, Photonics Spectra, Dec. 1985Google Scholar
  18. [18]
    Glaesemann, G. S. und Walter, D.J. (1991), Method for Obtaining Long-length Strength Distributions for Reliability Prediction, Opt. Eng. 30, 746CrossRefGoogle Scholar
  19. [19]
    Glaesemann, G. S., Gulati, S. T. und Helfinstine, J. D. (1988), Effect of Strain and Surface Composition on Young’s Modulus of Optical Fibers, 11. OFC, TUGS, 26Google Scholar
  20. [20]
    Baker, L. K. und Glaesemann, G. S. (1998), Break Source Analysis: Alternative Mirror Measurement Methods, IWCS Conf. Proc., 933–937Google Scholar
  21. [21]
    IEC draft, Technical Report on the Power-Law Theory of Optical Fibre Reliability, IEC SC86 A WG 1, to be publishedGoogle Scholar
  22. [22]
    Mitsunaga, Y., et al. (1982), Failure Prediction for Long-length Optical Fiber based on Proof Testing, J. Appl. Phys. 53, 4847CrossRefGoogle Scholar
  23. [23]
    Paul, A., und Glaesemann, G. S. (1997), An Appraisal of Mechanical Reliability Predictions for Optical Fibers based on Break Rates, IWCS Conf. Proc., 896–901Google Scholar
  24. [24]
    Hanson, T., und Glaesemann, G. S. (1997), Incorporating Multi-region Crack Growth into Mechanical Reliability Predictions for Optical Fibers, J. Mat. Sci. 32, 5305–5311CrossRefGoogle Scholar
  25. [25]
    Garvey, P. T., Hanson, T. A., Estep, M. G., und Glaesemann, G. S. (1997), Mechanical Reliability Predictions: An Attempt at Measuring the Initial Strength of Draw-abraded Optical Fiber using High Stressing Rates, IWCS Proc., 883–888Google Scholar
  26. [26]
    Volotinen, T., Breuls, T., Evanno, N., Kemeter, K., Kurkjian, C., Regio, P., Semjonov, S., Svensson, T., Glaesemann, G. S. (1998), Mechanical Behavior and B-value of an Abraded Optical Fiber, IWCS Conf. Proc., 881–890.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • K. Kemeter

There are no affiliations available

Personalised recommendations