Advertisement

Optische Mikrowellentechniken in Zugangsnetzen für die Mobilkommunikation

  • G. Grosskopf
Chapter

Zusammenfassung

Künftige Zugangsnetze zum breitbandigen Kommunikationsnetz sollen neben der Vergrößerung der Dienstevielfalt Multimediaanwendungen mit hohen Datenraten gestatten. Da die Endgeräte an jedem Ort einsetzbar sein sollen, gewinnen breitbandige Mobilfunksysteme zunehmend an Bedeutung. Eine Realisierungsmöglichkeit hierfür sind hybride Glasfaser-Funksysteme (hybrid fibre radio, HFR). Sie enthalten einerseits Mikrowellenkomponenten für die Funkstrecken zwischen den Mobilterminals und den Basisstationen und andererseits optische Komponenten zur Herstellung einer breitbandigen, verlustarmen Verbindung zwischen Basis- und Kontrollstation (Abb. 30.1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Hunziker, S.; Baechtold, W.: Cellular remote antenna feeding: Optical fibre or coaxial cable? Electron. Lett. Vol. 34 (1998), 1038–1040CrossRefGoogle Scholar
  2. [2]
    Bruun, M.; Gliese, U,: Cost Competiveness of Fiber-Optic Infrastructures for Metropolitan Micro/PicoCellular Mobile Networks, IEEE Photonics Technol. Lett. Vol. 10, No.3, (1998), 459–461CrossRefGoogle Scholar
  3. [3]
    Olesen, H.; Jacobsen, G.: A Theoretical and Experimental Analysis of Modulated Laser Fields and Power Spectra, IEEE Journ. Quantum Electronics, Vol. QE-18, No. 12, Dec. (1982), 2069–2080CrossRefGoogle Scholar
  4. [4]
    Matsui, Y. et al.: 30-GHz bandwidth 1,55’ m strain-compensated InGaAlAs-InGaAsP MQW laser, IEEE Photonics Technol. Lett. Vol. 9, No.1, (1997), 25–27CrossRefGoogle Scholar
  5. [5]
    Noguchi, K.; Mitomi, O.; Miyazawa, H.: Low-voltage and broadband Ti:LiNbO 3 modulators operating in the millimeter wavelength region, Optical Fiber Communication OFC’ 96, San Jose, USA, (1996), Vol. 2, 205–206Google Scholar
  6. [6]
    Nowak, W.; Sauer, M.: Dynamic Range Improvement and Multiplexing in Optical Microwave Subcarrier Systems by Dispersion Management, Wiss. Zeitschrift der TU-Dresden, 46 (1997), 55–59Google Scholar
  7. [7]
    Park, J.; Shakouri, M.S.; Lau, K.L.: Millimeter-wave electro-optical up converter for wireless digital communictions, Electron. Lett. Vol. 31 (1995), 1085–1086Google Scholar
  8. [8]
    Cox, C.H. III,; Ackerman, E.I.; Betts, G.E.: Relationship between gain and noise figure of an analog link, 1996 IEEE MTT-S International Microwave Symposium Digest, 1551–1554Google Scholar
  9. [9]
    Olson, T.: An RF and Microwave Fiber-Optic Design Guide, Microwave Journal (1996), 54–78Google Scholar
  10. [10]
    Yen, H.W.; Gee, C.M.; Blauvelt, H.: High-Speed Optical Modulation Techniques, SPIE Vol. 545, Optical Technology for Microwave Applications II (1985), 2–9CrossRefGoogle Scholar
  11. [11]
    Daryoush, A.S. et al.: Interfaces for High-Speed Fiber-Optic Lins: Analysis and Experiment, IEEE Trans. Microwave Theory and Techniques Vol. 39 (1991), 2031–2044CrossRefGoogle Scholar
  12. [12]
    Smith, G.H., Novak, D.: Broadband Millimeter-Wave (38 GHz) Fiber-Wireless Transmission System Using Electrical and Optical SSB Modulation to Overcome Dispersion Effects, IEEE Photonics Technol. Lett., Vol. 10, No. 1, (1998), 141–143CrossRefGoogle Scholar
  13. [13]
    Schmuck, H. et al.: Faseroptische mm-Wellen-Übertragungstechnik und ihre Anwendung, telekom praxis, Band 74, (1997), 9–15Google Scholar
  14. [14]
    Schmuck, H.; Heidemann, R.: Hybrid fibre-radio field experiment at 60 GHz, 22th Europ. Conf. on Optical Comamun., (ECOC’ 96), Sept. 1996, Oslo, Norway, Conference Digest Vol. 4, 59–62Google Scholar
  15. [15]
    Helmolt, C.H. et al.: A Mobile Broad-Band Communication System Based on Mode-Locked Lasers, IEEE Trans. Microwave Theory and Techniques, Vol. 45, (1997), 1424–1430CrossRefGoogle Scholar
  16. [16]
    Wake, D. et al.: Video Transmission Over a 40 GHz Radio Fibre Link, Electron. Lett., Vol. 28, (1992), 2024–2025CrossRefGoogle Scholar
  17. [17]
    Braun, R.P., Villino, G. et al.: Optical Harmonic Upconversion for the Microwave Generation in a Bidirectional Braodband Mocile Communication System, Electron. Lett., Vol. 33, (1997), 1884–1886CrossRefGoogle Scholar
  18. [18]
    Simonis, G.J.; Purchase, K.G.: Optical Generation, Distribution, and Control of Microwaves Using Laser Heterodyne, IEEE Transactions on Microwave Theory and Techniques, Vol. 38, (1990), 667–669CrossRefGoogle Scholar
  19. [19]
    Braun, R.-P. et al.: Optical Microwave Generation and Transmission Experiments in the 12 and 60 GHz Region for Wireless Communications, IEEE Microwave Theory and Techniques, Vol. 46, (1998), 320–330CrossRefGoogle Scholar
  20. [20]
    Wake, D.; Lima, C.R.; Davies, P.A.: Optical Generation of Millimeter-Wave Signals for Fiber-Radio Systems Using a Dual-Mode DFB Semiconductor Laser, IEEE Trans. Microwave Theory and Techniques, Vol. 43, (1995), pp. 2270–2276CrossRefGoogle Scholar
  21. [21]
    Pajarola, S.; Guekos, G.; Kawaguchi, H.: Optical Millimeter-Wave Generation and Transmission Using a Dual-Polarization Emission External Cavity Diode Laser, Microwave Photonics MWP’ 97, Duisburg, Sept. 1997, paper TH3-1, Techn. Digest pp. 75–78Google Scholar
  22. [22]
    Freude, W.: Microwave Generation and Transmission with Chirping Laser Diodes and Dispersive Fibres. Microwave Photonics MWP’ 97, Duisburg, Sept. 1997, paper FR3-4, Techn. Digest pp. 261–264Google Scholar
  23. [23]
    Mathoorasing, D. et al.: 38 GHz Optical harmonic mixer for millimetre-wave radiowave systems, Electron. Lett., Vol. 31, (1995), 970–972CrossRefGoogle Scholar
  24. [24]
    Georges, J.B. et al.: Transmission of 300 Mbit/s BPSK at 39 GHz Using Feedforward Optical Modulation, Electron. Lett., Vol. 30, (1994), 160–161CrossRefGoogle Scholar
  25. [25]
    Ramos, R.T.; Seeds, A.J.: Fast Heterodyne Optical Phase-Lock Loop Using Double Quantum Well Laser Diodes, Electron. Lett., Vol. 28, (1992), 82–83CrossRefGoogle Scholar
  26. [26]
    Kitayama, K.; Kuri, T.: Dual lightwave technique for optical generation and transport of wireless signals, Microwave Photonics’ 97, Duisburg, Germany, Sept. 1997, paper TH2-0, Techn. Digest pp. 43–46Google Scholar
  27. [27]
    Burghard, H.; Scholl, H.: A low phase noise 10 GHz to 2 THz continously tunable optical microwave source by optical injection, Microwave Photonics’ 97, Duisburg, Germany, Sept. 1997, paper TH3-0, Techn. Digest pp. 71–74Google Scholar
  28. [28]
    Goldberg, L. et al.: Microwave signal generation with injection-locked laser diodes, Electron. Lett., Vol. 19, (1983), 491–493CrossRefGoogle Scholar
  29. [29]
    Braun, R.-P. et al.: Low Phase Noise Millimeter-Wave Generation at 64 GHz and Data Transmission Using Optical Side Band Inject ion Locking, IEEE Photonics Technology Letters Vol. 10, (1998), 728–730CrossRefGoogle Scholar
  30. [30]
    Kobayashi, S.; Kimura, T.: Optical Phase Modulation in an Injection Locked AIGaAs Semiconductor Laser, Electron. Lett., Vol. 18, (1982), 210–211CrossRefGoogle Scholar
  31. [31]
    Wang, J.: Petermann, K.: Small Signal Analysis for Dispersive Optical Fiber Communication Systems, journ. Lightwave Technol., Vol. 10, (1992), 96–100CrossRefGoogle Scholar
  32. [32]
    Gliese, U.; Norskov, S.; Nielsen, T.N.: Chromatic Dispersion in Fiber-Optic Microwave and MillimeterWave Links, IEEE Trans. Microwave Theory and Techniques Vol. 44 (1996), 1716–1724CrossRefGoogle Scholar
  33. [33]
    Hofstetter, R.; Schmuck, H.; Heidemann, R.: Dispersion Effects in Optical Millimeter-Wave Systems Using Self-Heterodyne Method for Transport and Generation, IEEE Transactions on Microwave Theory and Techniques, Vol. 43, (1995), 2263–2296CrossRefGoogle Scholar
  34. [34]
    Takahata, K. et al.: 46.5-GHz-Bandwidth Monolithic Receiver OEIC Consisting of a Waveguide p-i-n Photodiode and a HEMT Distributed Amplifier, IEEE Photonics Technology Letters Vol. 10, (1998), 1150–1152CrossRefGoogle Scholar
  35. [35]
    Scott, D.C et al.: High Power, High Frequency Traveling Wave Heterojunction Phototransistors with Integrated Polyimide Waveguide, 1998 IEEE MTT-S International Microwave Symposium, paper THIC-5Google Scholar
  36. [36]
    Engel, Th. et al.: Narrow-Band Photoreceiver OEIC on InP Operating at 38 GHz, IEEE Photonics Technology Letters Vol. 10, (1998), 1298–1300CrossRefGoogle Scholar
  37. [37]
    Lin, L. Y. et al.: High Speed Photodetectors with High Saturation for High Performance Microwave Photonic Systems, Microwave Photonics MWP’ 96, Kyoto, Japan, paper TH4-6, Techn.Digest pp. 313–316Google Scholar
  38. [38]
    Ortel Vertriebs GmbH: Produktübersicht 1995Google Scholar
  39. [39]
    Hunziker, S. et al.: Low Cost Fiber Optic Links for Cellular Remote Antenna Repeaters, Broadband Access Networks, D.W. Faulner, A.L. Harmer, IOS Press Ohmsha, 1997, 130–136Google Scholar
  40. [40]
    Wake, D.; Moodie, D.G.: Passive Picocell-prospects for increasing the radio range, Microwave Photonics MWP’ 97, Duisburg, Sept. 1997, paper FR3-6,Techn. Digest pp. 269–271Google Scholar
  41. [41]
    Smith, G.H. et al.: Fullduplex broadband millimetre-wave optical transport system for fibre-wirdeless access, Electron. Lett., Vol. 33, (1997), 1159–1160CrossRefGoogle Scholar
  42. [42]
    Braun, R.-P. et al.: Microwave generation for bidirectional broadband mobile communications using optical sideband injection locking, Electron. Lett., Vol. 33, No. 16, (1997), 1395–1396CrossRefGoogle Scholar
  43. [43]
    O’Reilly, J.J et al.: RACE R2005: microwave optical duplex antenna, IEE Proc.-J, Vol. 140, No.6, (1993), 385–391MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • G. Grosskopf

There are no affiliations available

Personalised recommendations