Advertisement

Übertragungsstrecken mit Welienläingenmultiplexbetrieb

  • P. Krummrich
  • E. Gottwald
  • K. Kotten
  • H. Geiger
  • C. Glingener
  • C. Scheerer
  • G. Fischer
Chapter

Zusammenfassung

Durch das stark wachsende Verkehrsaufkommen in der Sprach- und Datenkommunikation müssen in Punkt-zu-Punkt-Verbindungen immer größere Übertragungsbandbreiten zur Verfügung gestellt werden. In Kap. 24 wurden verschiedene Multiplexverfahren vorgestellt, die es ermöglichen, die enorme Bandbreite der Monomodenfaser besser auszunutzen. Die höchsten Gesamtdatenraten werden derzeit sowohl in Labor- als auch in kommerziellen Systemen durch Wellenlängenmultiplex (engl. wavelength division multiplex, WDM) erreicht.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Kotschenreuther, J.: Wellenläingenmultiplex: Scharfer Wettlauf der Systemhersteller, ntz (1998), Bd. 10, S. 54–57Google Scholar
  2. [2]
    Yano, Y. et.al.: 2.6 Tb/s WDM Transmission Experiment using Optical Duobinary Coding, ECOC’96, PostDeadline-Paper ThB.3.I, Oslo, 1996Google Scholar
  3. [3]
    Fishman, D.A.; Nagel, J.A.: Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems. Journal of Lightwave Technology (1993), Bd. 11, Nr. 11, S. 1721–1728 (Fehler auf Seite 1726,linke Spalte, letzte Zeile:„should be above“ anstelle von „should not be above“)CrossRefGoogle Scholar
  4. [4]
    Villeneuve, B.; Kim, H.B.; Cyr, M.; Gariepy, D.: A compact wavelength stabilization scheme for telecommunication transmitters. LEOS summers topical meetings (1997), Beitrag WD2, S. 19–20Google Scholar
  5. [5]
    Ramaswami, R.: Optical networks: a practical perspective. Morgan Kaufmann Publishers (1998)Google Scholar
  6. [6]
    Bachmann, M. et al.: Polarization-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55 μm wavelength. Electronics Letters (1996), Bd. 32, Nr. 22, S. 2076–2078CrossRefGoogle Scholar
  7. [7]
    Yamada, M. et al.: Gain-flattened Tellurite-based EDFA with a flat amplification bandwidth of 76 nm. IEEE Photonics Technology Letters (1998), Bd. 10, Nr. 9, S. 1244–1246CrossRefGoogle Scholar
  8. [8]
    Sun, Y. et al.: 80 nm ultra-wideband erbium-doped silica fibre amplifier. Electronics Letters (1997), Bd. 33, Nr. 23, S. 1965–1967CrossRefGoogle Scholar
  9. [9]
    Kawai, S. et al.: Ultra-wide, 75 nm 3 dB gain-band optical amplifier utilising gain-flattened erbium-doped fluoride fibre amplifier and discrete Raman amplification. Electronics Letters (1998), Bd. 34, Nr. 9, S. 897–898CrossRefGoogle Scholar
  10. [10]
    Ohishi, Y. et al.: Praseodymium-doped fiber amplifiers at 1.3 IlmPraseodymium-doped fiber amplifiers at 1.3 μm. IEICE Transactions on Communications (1994), Bd. E77-B, Nr. 4, S. 421–440Google Scholar
  11. [11]
    Krummrich, P.: Praseodym-dotierte Faserverstarker für den Wellenlängenbereich um 1,3 μm, Fortschritt-Berichte VDI, Reihe 10,Nr. 379, VDI-Verlag, Düsseldorf (1995)Google Scholar
  12. [12]
    Nishida, Y. et al.: Plug-in type 1.3-μm fiber amplifier module for rack-mounted shelves. Technical Digest of the Conference on Optical Fiber Communication (1997), Bd. 6, 16.–21. Feb., Dallas, Texas, Beitrag WA6, S. 108–109Google Scholar
  13. [13]
    Sakamoto, T. et al.: Thulium-doped fluoride fiber amplifiers for 1.4 μm and 1.6 μm operation. Technical Digest of the Conference on Optical Amplifiers and their Applications (1996), 11.–13.Juli, Monterey, Ca, Beitrag ThC3, S. 40–43Google Scholar
  14. [14]
    Massicott, S.D. et al.: 1480 nm pumped erbium-doped fibre amplifier with all optical automatic gain control. Electronics Letters (1994), Bd. 30, Nr. 12, S. 962–964CrossRefGoogle Scholar
  15. [15]
    Zirngibl, M.: Gain control in erbium-doped fibre amplifiers by an all-optical feedback loop. Electronics Letters (1991), Bd. 27, Nr. 7, S. 560–561CrossRefGoogle Scholar
  16. [16]
    Scheerer, C. et al.: Influence of filter group delay ripples on system performance. Technical Digest of the European Conference on Optical Communications (1999), Nice, Bd. 1, S. 410–411Google Scholar
  17. [17]
    Takeda, N.; Taga, H.; Akiba, S.: The effect of aluminium concentration in EDFon gain equalization of the cascaded EDFA system. Technical Digest of the Conference on Optical Amplifiers and their Applications (1996), Monterey, Ca, 11.–13. Juli, Beitrag FD16, S. 182–185Google Scholar
  18. [18]
    Wysocki, P. F. et al.: Broad-band erbium-doped fiber amplifier flattened beyond 40 nm using long-period grating filter. IEEE Photonics Technology Letters (1997), Bd. 9, Nr.10, S. 1343–1345CrossRefGoogle Scholar
  19. [19]
    Dung, J.-C.; Chi, S.; Wen, S.: Gain flattening of erbium-doped fibre amplifier using fibre Bragg grating. Electronics Letters (1998), Bd. 34, Nr. 6, S. 555–556CrossRefGoogle Scholar
  20. [20]
    Kinoshita, S.; Onaka, H.; Chikama, T.: Large capacity WDM transmission based on wideband Erbium-doped fiber amplifiers. Technical Digest of the Conference on Optical Amplifiers and their Applications (1998), Vail, Co, 26.–29. Juli, Beitrag MDI, S. 54–57Google Scholar
  21. [21]
    Krummrich, P.M. et al.: Influence of stimulated Raman scattering on the channel power balance in bidirect ional WDM transmission. Technical Digest of the Optical Fiber Communication Conference (1999), San Diego, CA, 21.–26. Feb, Beitrag WJ6, S. 171–173Google Scholar
  22. [22]
    Chraplyvy, A.R.; Nagel, J.A.; Tkach, R.W.: Equalization in amplified WDM lightwave transmission systems. IEEE Photonic Technology Letters (1992), Bd. 4, Nr. 8, S. 920–922CrossRefGoogle Scholar
  23. [23]
    Petermann, K.; Wang, J.: Large signal analysis of FM-AM conversion in dispersive optical fibres and its application to PCM systems. Electronics Letters (1991) Bd, 27, Nr. 25, S. 2347–2348CrossRefGoogle Scholar
  24. [24]
    Agrawal, G. P.: Nonlinear Fiber Optics. 2nd ed., Wiley (1995), Kap. 2.4, S. 50–54Google Scholar
  25. [25]
    Agrawal, G. P.: Nonlinear Fiber Optics. 2nd ed., Wiley (1995), Kap. 8, S. 316–324CrossRefGoogle Scholar
  26. [26]
    Kawakami, H. et al.: Overmodulation of intensity modulated signals due to stimulated Brillouin scattering. Electronics Letters (1994), Bd. 30, Nr. 18, S. 1507–1509CrossRefGoogle Scholar
  27. [27]
    Nakazawa, M.: Optical soliton transmission. Transactions of the Institute of Electronics, Information and Communication. Engineers C-I (1991), Bd. J74C-I, Nr. 11, S. 429–239Google Scholar
  28. [28]
    O’Mahony, M.J.: Future prospects for optical communicatons. IEE Fifth Vacation School on ‘Optical Fibre Communications”, IEE London, UK (1990), 5.5Google Scholar
  29. [29]
    Doran N.J.: Dispersion-Managed Solitons. European Conference on Optical Communications (1998), vol 1, pp 97–99Google Scholar
  30. [30]
    Agrawal, G.P.: Nonlinear Fiber Optics. 2nd ed, Wiley (1995), Kap. 4,5,6Google Scholar
  31. [31]
    Kawai, S. et al.: Reduction of timing jitter due to Gordon-Haus effect in ultra-long high speed optical soliton transmission using optical bandpass filters. IEICE Transactions on communications (1994), Bd. E 77-B, Nr. 4, S. 462–468Google Scholar
  32. [32]
    LeGuen D., O’Hare A., DelBurgo S., Grot D., Favre F., Georges F.: Narrow band 640 Gbit/s soliton WDM transmission over 1200km of standard fibre with 100 km 21 dB amplifier spans. European Conference on Optical Communications, Bd. 3,S. 61–63, 1998Google Scholar
  33. [33]
    Nagel, J.: The dynamic behavior of amplified systems. Technical Digest of the Conference on Optical Fiber Communication (1998), Bd. 2, 22.–26. Februar, San Jose, CA, Beitrag Th03, S. 319–320Google Scholar
  34. [34]
    Srivastava, A.K. et al.: Fast gain control in an erbium-doped fiber amplifier. Technical Digest of the Conference on Optical Amplifiers and their Applications (1996), Bd. 11, 11.–13. Juli, Monterey, CA, Beitrag PDP4, S. 4–1–4–5Google Scholar
  35. [35]
    Hatton, W.H.; Nishiruma, JLT 1986, LT4-4, S. 1552–1555Google Scholar
  36. [36]
    Bergano, N.S.; Davidson, C.R.: Wavelength division multiplexing in long-haul transmission systems. Journal of Lightwave Technology (1996), Bd. 14, Nr. 6, S. 1299–1308CrossRefGoogle Scholar
  37. [37]
    Bigi, F.: Towards Optical Networking. Integrating and Managing Wavelength Division Multiplexing’ 98, London, 1998Google Scholar
  38. [38]
    Draft ITU-T Recommendation G.692-Optical Interfaces for multi-channel systems with optical amplifiers (COM 15-R 3, 3 (1997))Google Scholar
  39. [39]
    Draft ITU-T Recommendation G.959.I-Physical layer aspects of optical networks (2(1998))Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • P. Krummrich
  • E. Gottwald
  • K. Kotten
  • H. Geiger
  • C. Glingener
  • C. Scheerer
  • G. Fischer

There are no affiliations available

Personalised recommendations