Advertisement

Übertragungsstrecken mit Zeitmultiplex

  • G. Veith
  • B. Wedding
  • H. BüLow
Chapter

Zusammenfassung

Die in der digitalen optischen Übertragungstechnik gebräuchlichste Multiplextechnik basiert auf dem Zeitmultiplex (engl. time division multiplexing, TDM). Hierbei werden mehrere Nutzkanäle mit niedriger Datenrate zeitlich ineinander verschachtelt über einen optischen Übertragungskanal mit hoher Datenrate gemeinsam übertragen und empfangsseitig durch einen Demultiplexer wieder in die ursprünglichen Nutzkanäle zerlegt [1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Kap.6 in „Optische Telekommunikationssysteme“, Herausg, Hultzsch, H., Damm Verlag, 1996Google Scholar
  2. [2]
    Veith, G.: “European 40 Gbit/s field trials”. Invited Paper, ECOC’ 99, Nice, Techn.Digest, Vol. II, pp. 82–83Google Scholar
  3. [3]
    Nakazawa, M. et al.: “TDM single channel 640 Gbit/s transmission experiment over 60 km using a 400 fs pulse train and a walk-off free, dispersion-flattened nonlinear optical loop mirror”. Post Deadline Paper PD-14, OFC’ 98Google Scholar
  4. [4]
    Vgl. z.B. Post-Deadline Papers PD2-1, PD2-2, PD2-4, PD2-5, PD2-8, PD2-5, PD2-10, Technical Digest ECOC’ 99, Nice, France, Sept. 1999Google Scholar
  5. [5]
    Desurvire, E.: Erbium-doped fiber amplifiers: principles and applications. John Wiley & Sons, Inc., New York (1994)Google Scholar
  6. [6]
    Olsson, N.A.: “Lightwave Systems With Optical Amplifiers.” Journal of Lightwave Technology, vol. 7, no. 7 (1989) 1071–1082CrossRefGoogle Scholar
  7. [7]
    Habbab, I.M.I.; Cimini, Jr., L.J.: “Optimized Performance of Erbium-Doped Fiber Amplifiers in Subcarrier Multiplexed Lightwave AM-VSB CATVSystems”. Journal of Lightwave Technology, Vol.9, No. 10 (1991) 1321–1329CrossRefGoogle Scholar
  8. [8]
    Laming, R.I.; Payne, D.N.: “Noise Characteristics of Erbium-Doped Fiber Amplifier Pumped at 980 nm”. IEEE Photonics Technology Letters vol. 2 no. 6 (1990) 418–421CrossRefGoogle Scholar
  9. [9]
    Elrefraie, A.F. et al.: “Chromatic dispersion limitations in coherent lightwave transmission systems”. Journal of Lightwave Technology, vol. 9 no. 5 (1988) 704–709CrossRefGoogle Scholar
  10. [10]
    Lach, E.; Kaiser, M.; Pöhlmann, W.; Veith, G.:“40 Gbit/s ETDM binary NRZ transmission over installed G.652 field fiber with enhanced dispersion tolerance”. Techn. Digest ECOC’ 99, Vol. II, pp. 88–89, ECOC’99, Nice, 1999Google Scholar
  11. [11]
    Grüner-Nielsen, L.; Edvold, B.; Magnussen, D. et al.: “Large volume manufacturing of dispersion compensation fiber”. Proc. OFC’ 98, Paper TuD5, San José, Ca., 1998Google Scholar
  12. [12]
    Yonegawa, K.; Matsuura, A.; Kuwahara, S. et al.: “Dispersion-compensation-free 40 Gbit/s x 4-channel WDM transmission experiment using zero-dispersion-flattened transmission line”. Proc. OFC’ 98, Paper PD20, San José, Ca., 1998Google Scholar
  13. [13]
    Gnauck, A.H.; Giles, C.R.; Cimini, L.J. et al.: IEEE Photon. Technol. Lett. 3 (1991) 1147CrossRefGoogle Scholar
  14. [14]
    Kashyap, R.: “Photosensitive optical fibers: Devices and applications”. Opt. Fiber Technol. 1 (1994) 17CrossRefGoogle Scholar
  15. [15]
    Loh, W.H.; Laming, R.I.; Gu, M. et al.: Electron. Lett. 31 (1995) 2203CrossRefGoogle Scholar
  16. [16]
    Wang, J.: Petermann, K.: “Small Signal Analysis for Dispersive Optical Fiber Communication Systems”. Journal of Lightwave Technology, Vol. 10, No.1, January 1992, pp. 96–100CrossRefGoogle Scholar
  17. [17]
    Cartaxo, A.; Wedding, B; Idler, W.: “Influence of fiber nonlinearity on the fiber transfer function: theoretical and experimental analysis”. Journal of Lightwave technology, Vol. 17,No. 10, October 1999, pp. 1806–1813CrossRefGoogle Scholar
  18. [18]
    Wedding, V: “Analysis of fibre transfer function and determination of receiver frequency response for dispersion supported transmission”. Electron. Lett. 30, 1994, pp. 58–59CrossRefGoogle Scholar
  19. [19]
    Schlump, D.; Wedding, B; Bülow, H.: “Electronic Equalisation of PMD and Chromatic Dispersion induced Distortion after 100km Standard Fibre at 10 Gbit/s”, ECOC’ 98, Madrid, 1998, paper WdC14, pp. 535–536Google Scholar
  20. [20]
    Wedding, B; Pöhlmann, W.; Schlump, D.; Schlag, E.; Ballentin, R.: “SiGe Circuits for High Bitrate Optical Transmission Systems”. IEEE International Symposium on Circuits and Systems, ISCAS’ 99, Orlando, May 30-June 2, 1999, invited paper 82.3, pp. II-492–II-495Google Scholar
  21. [21]
    Wedding, B; Schlag, E.: “Novel 10 Gbit/s integrated silicon bipolar decision circuit for dispersion supported transmission”. Electron. Lett. 30, 1994, 5, pp. 399–400CrossRefGoogle Scholar
  22. [22]
    Wedding, B; Köffers, K.; Schlump, D.: “Multi-bit-shift Dispersion Supported Transmission: A new approach to multiply the dispersion-limited transmission span”. ECOC’ 99, Nice, September 26–30, 1999, paper MoC1Google Scholar
  23. [23]
    Idler, W.; Franz, B; Schlump, D.; Wedding, B; Ramos, A.J.: “Field trial at 40 Gbit/s over 28.6 km and 86 km of Standard Singlemode Fibre using Quaternary Dispers ion Supported Transmission”. Electron. Lett. 25, 1998, vol. 34, pp. 2425–2426CrossRefGoogle Scholar
  24. [24]
    Walklin, S.; Conradi, J: “Multilevel Signaling for Increasing the Reach of 10 Gb/s Lightwave Systems”. Journal of Lightwave Technology, Vol. 17, No. 11, November 1999, pp. 2235–2248CrossRefGoogle Scholar
  25. [25]
    ITU-T Recommendation G.691 (2000) “Optical Interfaces for Single Channel SDH Systems with Optical Amplifiers, and STM-64 systems”Google Scholar
  26. [26]
    Agrawal, G.: “Nonlinear Fiber Optics”. Second Edition, Academic Press, San Diego, 1995Google Scholar
  27. [27]
    Song, J.; Fan, C; Yao, Y.; Feng, C: “Improved dispersion-limit formula for IM/DD fiber transmission systems”. Technical Digest, OFC’ 94, San Jose, 1994, WM5, pp. 157–158Google Scholar
  28. [28]
    Wedding, B: “Reduction of bit error rate in high speed optical transmission systems due to optimized electrical drive pulse shaping”. Technical Digest, ECOC’ 88, Brighton, 1988, pp. 187–190Google Scholar
  29. [29]
    Wedding, B: “New method for optical transmission beyond dispersion limit”. Electron. Lett. 28, 1992, 14, pp. 1298–1300CrossRefGoogle Scholar
  30. [30]
    Wedding, B; Franz, R; Junginger, B: “10 Gbit/s optical transmission up to 253 km via standard singlemode fibre using the method of dispersion supported transmission”. Journal of Lightwave Technology, vol. 12 no. 10, October 1994, invited paper, pp. 1720–1727CrossRefGoogle Scholar
  31. [31]
    Schlump, D.; Köffers, K.; Pöhlmann, W.; Reichelt, H.J.; Wedding, B: “ 10 Gbit/s Dispersion Supported Transmission Field Trial over 123km Standard Single Mode Fibre for HDTV Studio Interconnection”. Electron. Lett. 31, 1995, 21, pp. 1854–1855CrossRefGoogle Scholar
  32. [32]
    Franz, B; Pöhlmann, W.; Wedding, R; Ramos, A.J.: “Field Experiments at 10 Gbit/s over 80 km, 160km and 240 km standard singlemode fibre installed between Sesimbra and Lisbon using Dispersion Supported Transmission Technique”. Electron. Lett. 31, 1995, 21, pp. 1860–1861CrossRefGoogle Scholar
  33. [33]
    Wedding, B; Köffers, K.; Franz, B; Mathoorasing, D.; Kazmierski, Ch.; Monteiro, P.; Matos, J: “Dispersion-Supported Transmission of 20 Gbit/s over 53 km Standard Singlemode Fibre”. Electron. Lett. 31, 1995, 7,pp. 566–568CrossRefGoogle Scholar
  34. [34]
    Monteiro, P.; Lima, M.; da Rocha, J.P.; Teixeira, A.; Franz, R; Wedding, B: “An Electrically Adjustable Equalizer for Very High Bit Rate Transmission Systems based on Dispersion Supported Transmission”. 5th IEEE International Conference on Electronics, Circuits and Systems, ICEC’98, Lisbon, Sept. 7.–10., 1998Google Scholar
  35. [35]
    Breuer, D.; Ennser, K.; Petermann, K.: “Comparison of NRZ-and RZ-modulation format for 40 Gbit/s TDM standard-fibre systems”. Proc. ECOC, Oslo, 1996, Vol. 2, pp. 199–202Google Scholar
  36. [36]
    Yonenaga, K.: “Dispersion-Tolerant Optical Modulation Techniques for High-Speed Transmission Systems”. Third Optoelectronics and Communications Conference, OECC’98, Technical Digest, 1998, pp. 88–89Google Scholar
  37. [37]
    Penninckx, D.: “Effect of electrical filtering of duobinary signals on the chromatic dispersion transmission limitations”. ECOC’98, Madrid, 1998, pp. 537–538Google Scholar
  38. [38]
    Sieben, M.; Conradi, J.; Dodds, D.E.: “Optical Single Sideband Transmission at 10 Gbit/s Using Only Electrical Dispersion Compensation”. Journal of Lightwave Technology, Vol. 17, No. 10, October 1999, pp. 1806–1813CrossRefGoogle Scholar
  39. [39]
    Hasegawa, A., Tappert, F.:“Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers”. Appl. Phys. Lett. 23 (1973) 142–143CrossRefGoogle Scholar
  40. [40]
    Hasegawa, A.; Kodama, Y.:“Signal transmission by optical solitons in monomode fibers”. Proc. IEEE 69 (1981) 1145–1150CrossRefGoogle Scholar
  41. [41]
    Gordon, J.P.; Haus, H.A.:“Random walk of coherently amplified solitons in optical fiber transmission”. Opt. Lett. 11 (1986) 665–667CrossRefGoogle Scholar
  42. [42]
    Nakazawa, M.; Suzuki, K.: “Experimental demonstration of soliton data transmission over unlimited distances with soliton control in time and frequency domains”. Electron. Lett. 29 (1993) 729–730CrossRefGoogle Scholar
  43. [43]
    Mollenauer, L.F.; Lichtman, E. et al.: “Demonstration, using sliding-frequency guiding filters, of error free soliton transmission over more than 20Mm at 20 Gbit/s in two channel WDM”. Electron. Lett. 29 (1993) pp. 910–911CrossRefGoogle Scholar
  44. [44]
    Naka, A. et al.: Electron. Lett. 32 (1996) 1694–1695CrossRefGoogle Scholar
  45. [45]
    Bouchoule, S. et al.: “Photonic technologies for ultrahigh speed information highways”. Opt. Fiber Technology, OFT-5 (1999) 275–301CrossRefGoogle Scholar
  46. [46]
    Nesset, D. et al.: “40 Gbit/s transmission over 186.6 km of installed fiber using mid-span spectral inversion for dispersion compensation”. Paper ThI3, OFC’ 99, San Diego, CaGoogle Scholar
  47. [47]
    Poole, C.D.; Nagel, J.: (Kap. 6) Polarization Effects in Lightwave Systems. In Herausg.: Kaminow, I.P.; Koch, T.L.: Optical Fiber Communications IIIA. Academic Press, San Diego (1997)Google Scholar
  48. [48]
    Bülow, H.: Temporal variation of installed fiber PMD and the impact on high-bitrate optical transmission. Proc. NOC’ 98 II, Manchester, in Herausg.: Faulkner, D.W.; Harmer, A.L.: Long-Haul, ATM and Multi-Media Networks NOC’ 98. IOS Press Amsterdam (1998) 253–258Google Scholar
  49. [49]
    Gleeson, L.M.; Sikora, E.S.R.; Mahoney, M.J.O.: Experimental and numerical investigation into the penalties induced by second order polarisation mode dispers ion at 10 Gb/s. Proc. ECOC 97, 1 Edinburgh (1997) 15–18Google Scholar
  50. [50]
    Bülow, H.; Veith, G.: Temporal Dynamics of Error-rate Degradation induced by Polarisaiton Mode Dispersion Fluctuation of a Field Fiber Link. Proc. ECOC’97 1 Edinburg (1997) 115–118Google Scholar
  51. [51]
    Gruhl, H.; Herchendröder, G.; Mattheus, A.; Vobian, J.: Characterization of 1100km of installed standard monomode fibre and statistical analysis in view of network design. Proc. NOC’ 97 II, Anwerp in Herausg.: Faulkner, D.W.; Harmer, A.L.: Core and ATM Networks NOC’ 97. IOS Press Amsterdam (1997) 59–64Google Scholar
  52. [52]
    Peters, J.; Dori, A.; Kapron, F.: Bellcore’s fiber measurement audit of existing cable plant foruse with high bandwidth systems. Proc, NFOEC 97 1 (1997) 19–30Google Scholar
  53. [53]
    Weiershausen, W.; Scholl, H.; Kuppers, F.; Leppla, R.; Hein, R; Burkhard, H.; Lach, E.; Veith, G.: “40-Gbit/s field test on an installed fiber link with high PMD and investigation of differential group delay impact on the transmission performance”. Techn. Dig. OFC’ 99 ThI5 San Diego (1999)Google Scholar
  54. [54]
    Bülow, H.: System Outage Probability Due to First-and Second-Order PMD. Photon. Technol. Lett., vol. 10, no. 5, (1998) 696–698CrossRefGoogle Scholar
  55. [55]
    Bülow, H.: Equalisation of Bit Distortion Induced by Polarisation Mode Dispersion. Proc. NOC’ 97 II Anwerp in Herausg.: Faulkner, D.W.; Harmer, A.L.: Core and ATM Networks NOC’ 97. IOS Press Amsterdam (1997) 65–72Google Scholar
  56. [56]
    Heismann, F.; Fishman, D.A.; Wilson, D.L.: “Automatic compensation of first-order polarization mode dispersion in a 10Gb/s transmission system”. Proc. ECOC’98 Madrid 1 WdC11 (1998) 529–530Google Scholar
  57. [57]
    Sandel, D.; Hinz, S.; Yoshida-Dierolf, M.; Noé, R.; Wessel, R.; Suche, H.: Optical polarisation-made dispersion compensation of 2.4 bit duration of differential group delay at 40 Gbit/s, Electron. Lett., vol. 35, no. 16 (1999) 1365–1367CrossRefGoogle Scholar
  58. [58]
    Winters, J.H.; Gitlin, R.D.: Electrical Signal Processing Techniques in Long-Haul Fiber-Optic Systems. Trans. on Commun., vol. 38, no. 9, (1990) 1439–1453CrossRefGoogle Scholar
  59. [59]
    Bülow, H.; Buchali, F.; Baumert, W.; Ballentin, R.; Wehren, T.: PMD Mitigation at 10 Gbit/s Using Linear and Nonlinear Integrated Electronic Equaliser Circuits. Electron. Lett., vol. 36, no. 2 (2000) 163–164CrossRefGoogle Scholar
  60. [60]
    Chesnoy, J.:“Global undersee networks”. Techn. Digest OFC’99, paper TuD1, San Diego, Ca. 1999Google Scholar
  61. [61]
    Akiba, S.; Yamamoto, S.:“WDM undersea cable network technology for 100 Gbit/s and beyond”. Opt. Fiber Technology, 4 (1998) 19–34CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • G. Veith
  • B. Wedding
  • H. BüLow

There are no affiliations available

Personalised recommendations