Advertisement

Faserverstärker und Faserlaser

  • N. Schunk
  • A. Bahl
  • U. Unrau

Zusammenfassung

Vom ersten Versuch in den sechziger Jahren [1] Faserlaser bzw. Faserverstärker zu realisieren, vergingen ungefähr 30 Jahre bis zur Praxistauglichkeit. Mit der Entwicklung von Hochleistungshalbleiterlaserdioden als Pumpquellen und der Dotierung der Einmodenfaser mit dem Seltene-Erd-Element Erbium wurde der Grundstein gelegt und zugleich der Durchbruch für den Erbium-dotierten Faserverstärker erzielt, der die heutigen WDM-Weitverkehrsstrecken im 1,55 μm, Wellenlängenbereich erst ermöglicht hat.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Koester, C.J.; Snitzer, E.A.: Amplification in a fiber laser. Applied Optics (1964) 1182–1186Google Scholar
  2. [2]
    Miniscalco, W.J.: Optical and electronic properties of Rare Earthin Glases in Rare Earth doped fiber lasers and amplifiers. Digonnet (ed) (1993), Marcel Dekker, New YorkGoogle Scholar
  3. [3]
    Reisfeld, R.; Jorgensen, C.K.: Lasers in Excited States of Rare Earth (1977), Springer, BerlinCrossRefGoogle Scholar
  4. [4]
    Desurvire, B.: Erbium doped fiber amplifiers (1994), John Wiley, New YorkGoogle Scholar
  5. [5]
    Wetenkamp, L.: Charakterisierung von laseraktiv dotierten Schwermetallfluorid-Gläsern und Faserlasern (1991), Dissertation TU BraunschweigGoogle Scholar
  6. [6]
    Yariv, A.: Quantum Electronics (1975) second ed., John Wiley, New YorkGoogle Scholar
  7. [7]
    Marheine, C: private Mitteilung (1999)Google Scholar
  8. [8]
    Desurvire et al.: Efficient erbium-doped fiber amplifier at a 1.53 μm wavelength with a high output saturation power. Optics Lett (1989) 1255Google Scholar
  9. [9]
    Pedersen et al.: Conversion efficiency and noise in erbium-doped fiber power amplifiers. Proc. OAA’91 (1991) ThE3, S 170Google Scholar
  10. [10]
    Wannemacher, S.: Untersuchung und Aufbau praseodymdotierter optischer Faserverstärker. Fortschritt Berichte VDI (1997) Reihe 10, Nr. 466Google Scholar
  11. [11]
    Heffner, H.: The fundamental noise limit of linear amplifiers. Proc. IRE (1962) 1604Google Scholar
  12. [12]
    Giles, C.R.; Desurvire, B.: Modeling erbium-doped fiber amplifieres. IEEE J. LT. 9 (1991) 271Google Scholar
  13. [13]
    Mukai, T.; Yamamoto, Y.: Noise in AlGaAs semiconductor laser amplifier. IEEE J. QE 18 (1982) 564CrossRefGoogle Scholar
  14. [14]
    Giles et al.: Noise performance of erbium-doped fiber amplifier pumped at 1.49 μm and application to signal preamplification at 1.8 Gbit/s. IEEE PTL 1 (1989) 367CrossRefGoogle Scholar
  15. [15]
    Marcerou et al.: General theoretical approach describing the complete behavior of the erbium-doped fiber amplifier. Proc. SPIE Conf. on Fiber laser Sources and Amplifiers 1373 (1990) 168Google Scholar
  16. [16]
    Desurvire, E.; Desthieux, B: Fundamental limitations of EDFA in amplified transmission systems, Tutorial OFC’ 99. ThL (1999) 121–140Google Scholar
  17. [17]
    Gordon, J.P.; Mollenauer, L.E.: Effects of fiber nonlinearities and amplifier spacing on ultra-long distance transmission. IEEEJ. LT. 9 (1991) 170–173Google Scholar
  18. [18]
    Kuo, C.Y.; Bergmann, E.E.: Erbium-doped fiber amplifier second-order distortion in analog links and electronic compensation. IEEE PTL 3 (1991) 829–831CrossRefGoogle Scholar
  19. [19]
    Desthieux et al.: Spectral bandwidth broadening for longhaul submarine WDM applications using phosphorus-aluminium-codoped EDFAs. Electron. Lett. 32 (1996) 2214–2216CrossRefGoogle Scholar
  20. [20]
    Inoue et al.: Tunable gain equalization using a Mach-Zehnder optical filter amplifier. IEEE PTL 3 (1991) 718–720CrossRefGoogle Scholar
  21. [21]
    Zervas, M.N.; Laming, R.I.: Twin-core fiber Erbium-doped channel equalizer. IEEE J. LT. 13 (1995) 721–731Google Scholar
  22. [22]
    Betts et al.: Split beam Fourier filter and is application in a gain flattened EDFA. Proc. OFC’ 95, TuP4, 80–81Google Scholar
  23. [23]
    Wilkinson et al.: D-fiber for Erbium gain spectrum flattening. Electron. Lett. 28 (1992) 131–132CrossRefGoogle Scholar
  24. [24]
    Vengsarkar et al.: Long-period fiber gratings as band rejection filters. IEEE J. LT. 14 (1996) 58–65Google Scholar
  25. [25]
    Erdogan, T.: Fiber grating spectra. IEEEJ.LT. 15 (1997) 1277–1294Google Scholar
  26. [26]
    M. Tachibana et al.: Erbium-doped-fiber amplifier with flattened gain spectrum. IEEE PTL 3 (1991) 118–120CrossRefGoogle Scholar
  27. [27]
    Wysocki et al.: Broad-band erbium doped fiber amplifier flattened beyond 40 nm using long-period grating fiber. IEEE PTL 9 (1997) 1343–1345CrossRefGoogle Scholar
  28. [28]
    Massicott et al.: High gain, broadband 1,6 μm Er3+ silica doped fiber amplifier. Elect. Lett., 26 (1990) 1645–1646CrossRefGoogle Scholar
  29. [29]
    Cordina et al.: Ultra low noise long wavelength EDFA with 3,6 dB external noise figure. Proc. OFC’ 99 WA 5 (1999) 13–15Google Scholar
  30. [30]
    Yamada et al.: Broadband and gain-flattened Er3+-doped tellurite fibre amplifier constructed using a gain equaliser. Electron. Lett. 34 (1998) 370–371CrossRefGoogle Scholar
  31. [31]
    Masada et al.: Wide-band a low noise optical amplification using distributed Raman amplifiers and Erbium-doped fiber amplifiers. Proc.ECOC’98, 51–52Google Scholar
  32. [32]
    Kawaiet al.: Ultra-wide 75 nm 3 dB-gain-band optical amplifier utilising gain-flattened erbium doped fluoride fibre amplifier and diskrete raman amplification. Electron. Lett. 34 (1998) 897–898CrossRefGoogle Scholar
  33. [33]
    Sun et al.: A gain-flattened ultra wide band EDFA for high capacity WDM optical communication systems. Proc. ECOC’98, 53–54Google Scholar
  34. [34]
    Freeman et al.: High capacity EDFA with output power to support densely loaded channels. Proc. OFC’ 99,WA 6, 16–18Google Scholar
  35. [35]
    Snitzer et al.: Double-clad, offest core Nd fiber laser. Proc.OFC’ 88 Paper PD5Google Scholar
  36. [36]
    Pasquale et al.: 23 dBm output power Er/Yb co-doped fiber amplifier for WDM signals in the 1575-1605 nm wavelength region. Proc. OFC’99, WA 2, 4–6Google Scholar
  37. [37]
    Zirngibl, M.: Gain control in Erbium-doped fibre amplifiers by an all-optical feedback loop. Electron. Lett. 27 (1991) 560–561CrossRefGoogle Scholar
  38. [38]
    Luo et al.: Performance degradation of all-optical gain-clamped EDFA’s due to relaxation-oscillations and spectral-hole burning in amplified WDM networks. IEEE PTL 9 (1997) 1346–1348CrossRefGoogle Scholar
  39. [39]
    Zhao et al.: Gain clamped Erbium-doped fiber amplifiers-modeling and experiment. IEEE Select.Top. in QE. 3 (1997) 1008–1012CrossRefGoogle Scholar
  40. [40]
    Lee, S.H.; Kim, S.H.: Performance of all optical gain-clamped EDFA in 8 channel x 10 Gbps WDM using stimulated Brillouin scattering. Proc.ECOC’ 98, 47–48Google Scholar
  41. [41]
    France, P. W.: Optical fibre lasers and amplifiers (1991), Blackie, GlasgowGoogle Scholar
  42. [42]
    Aoki, Y.: Properties of fiber Raman amplifiers and their applicability to digital optical communication systems. J. of Lightw. Techno. 6 (1988) 1225–1239CrossRefGoogle Scholar
  43. [43]
    Hansen, P.B.: Rayleigh scattering limitations in distributed Raman pre-amplifiers. IEEE PTL 10 (1998) 159–161CrossRefGoogle Scholar
  44. [44]
    Agraval, G.P.: Nonlinear Fiber Optics (1989) Academic Press, BostonGoogle Scholar
  45. [45]
    Askasaka et al.: Characteristics of optical fibers for discrete Raman amplifiers. Proc.ECOC’ 99, 1–288Google Scholar
  46. [46]
    Emori et al.: Broadband lossless DCF using Raman amplification pumped by multichannel WDM laser diodes. Electron. Lett. 34 (1998) 2145–2146CrossRefGoogle Scholar
  47. [47]
    Stentz, A.J.: Raman and cladding-pumped fiber amplifiers and lasers. Tutorial ThR OFC’99, 143–167Google Scholar
  48. [48]
    Kani et al.: Fibre Raman amplifier for 1520 nm band WDM transmission. Electron. Lett. 34 (1998) 1745–1747CrossRefGoogle Scholar
  49. [49]
    Chernikov et al.: Broadband Raman amplifiers in the spectral range of 1480-1620. Proc. OFC’99, WG 6, 117–119Google Scholar
  50. [50]
    Hansen et al.: Applications of Raman amplification in 1.3 μm WDM systems. Proc.ECOC’ 98, 5–7Google Scholar
  51. [51]
    Nielsen et al.: 8-10Gb/s 1,3 μm unrepeated transmission overa distance of 141 km with Raman postand pre-amplification. IEEE PTL 10 (1998) 1492–1494CrossRefGoogle Scholar
  52. [52]
    Rottwitt et al.: Transparent 80 bidirectional pumped distributed Raman amplifier with second order pumping. Proc. ECOC’ 00, II–144Google Scholar
  53. [53]
    Zyskind et al.: Single frequency Erbium-doped fibre lasers. Electron.Lett. 28 (1992) 1385–1386CrossRefGoogle Scholar
  54. [54]
    Ding, M.; Cheo, P.K.: Effects of Yb:Er-Codoping on suppressing self-pulsing in Er-doped fiber lasers. IEEE PTL 9 (1997) 324–326CrossRefGoogle Scholar
  55. [55]
    Kringlebotn et al.: Efficient low-noise grating feedback fiber laser doped with Er3+: Yb3+“. Proc. OFC’94, TuG 5, 26–27Google Scholar
  56. [56]
    Ibsen, M. et al.: All-fibre DFB laser WDM transmitters with integrated pump redundancy. Proc. ECOC’ 99, 1–74Google Scholar
  57. [57]
    Schmuck, H.; Pfeiffer, Th.; Bülow, H.: Design optimisation of Erbium ring laser regarding output power and spectral properties. Electron. Lett. 28 (1992) 1637–1639CrossRefGoogle Scholar
  58. [58]
    Tünnermann et al.:„Faserlaser, Neuartige Laserstrahlquellenmit Emissionim sichtbaren Bereich. Phys. Bl. 52 (1996) 1123–1127CrossRefGoogle Scholar
  59. [59]
    Grubb, S. G.: High-power fiber amplifiers and Lasers. Tutorial ThO OFC’96, 243–260Google Scholar
  60. [60]
    Hansen et al.: 529 km unrepeatered transmission at 2.488 Gbit/s using dispersion compensation, forward error correction, and remote post-and pre-amplifiers pumped by diode pumped Raman lasers. Electron.Lett. 31 (1995) 1460–1461CrossRefGoogle Scholar
  61. [61]
    Blondel et al.: Error-free 32-10 Gbit/s unrepeatered transmission over 450km. Proc.ECOC’ 99, PD2-6, PD2-6, 34–35Google Scholar
  62. [62]
    Dianov et al.: Investigation of CW highly efficient 1.24 μm Raman laser based on low-loss phosphosilicate fiber. Proc.ECOC’ 99, 1–72Google Scholar
  63. [63]
    Sudo, S.: Optical fiber amplifier. ISBN 0-89006-809-7 (1997) Artech House, New YorkGoogle Scholar
  64. [64]
    Allain et al.: Energy transfer in Pr3+/Yb3+-doped fluoroziconate fibres. Electron. Lett. 27 (1991) 1012–1014CrossRefGoogle Scholar
  65. [65]
    Whitley, T.J.: A review of recent system demonstration incorporating 1.3 μm Praseodymium-doped fluoride fiber amplifier. IEEE J. LT. 13 (1995) 744–760Google Scholar
  66. [66]
    Krummrich, P.M.: Aspects of pump wavelength selection for Pr3+-doped fiber amplifiers. Proc. OAA’ 94, WC2, 22–24Google Scholar
  67. [67]
    Yamada et al.: Pr3+-doped fluoride fiber amplifier module pumped by a fiber coupled master oscillator/ power amplifier laser diode. IEEE PTL 9 (1997) 312–323CrossRefGoogle Scholar
  68. [68]
    Krummrich, P.M.: 1,3 μm Faserverstärker, Fortschritt Berichte VDI (1997) Reihe 10, Nr. 379Google Scholar
  69. [69]
    Tawarayama et al.: Efficient amplification at 1.3μm in a Pr3+-doped Ga-Na-S fiber. Proc.OAA’ 97 PD1 1997Google Scholar
  70. [70]
    Marhic et al.: Cross phase modulation and four wavemixing in Tellurite EDFA’s. Proc.ECOC’ 99 I–376Google Scholar
  71. [71]
    Sakamoto et al.: 35-dB gain Tm-doped ZBLYAN fiber amplifier operating at 1,65 μm. IEEE PTL 8 (1996) 349–351CrossRefGoogle Scholar
  72. [72]
    Wetenkamp et al.: Efficient CW operation of tunable fluorzirconate fiber lasers at wavelengths pumpable with semiconductor laser diodes. J. Non.-Cryst. Solids 140 (1992) 19–24CrossRefGoogle Scholar
  73. [73]
    Allainet al.: Energy transfer in Er3+/Pr3+-doped fluoride glass fibres and application to lasing at 2.7 μm, Electron. Lett. 27 (1991) 445–447Google Scholar
  74. [74]
    Percival et al.: Thulium sensitised Holmium-doped cw fluoride fibre laser of high efficiency. Electron. Lett. 28 (1992) 2231–2232CrossRefMathSciNetGoogle Scholar
  75. [75]
    Schneider, J.: Mid-infrared fluoride fiber lasers in multiple cascade operation. IEEE PTL 7 (1995) 354–356CrossRefGoogle Scholar
  76. [76]
    McAleavey et al.: Narrow linewidth, tunable Tm3+-doped fluoride fiber laser for optical-based hydrocarbon gas sensing. IEEE Select. Top. in QE. 3 (1997) 1103–1111CrossRefGoogle Scholar
  77. [77]
    Smart et al.: CW-room temperature upconversion lasing at blue, green and red wavelengths in infrared pumped Pr3+-doped fluoride fibre. Electron. Lett. 27 (1991) 1307–1308CrossRefGoogle Scholar
  78. [78]
    Whitleyet al.: Upconversion pumped green lasing in erbium doped fluorozirconate fibre. Electron. Lett. 27 (1991) 1785–1786CrossRefGoogle Scholar
  79. [79]
    Paschotta et al.: 230 m Watt blue light from Thulium-doped upconversion fiber laser. IEEE Select. Top. in QE. 2 (1997) 1100–1102CrossRefGoogle Scholar
  80. [80]
    Nakamura, S.; Fasol, G.: The blue laser diode, GaN based light emitters and lasers. ISBN 3-54061590-3, 1997, Springer, BerlinGoogle Scholar
  81. [81]
    Lucas, J.: Fluoride glasses for modern optics. Journal of Fluorine Chemistry 72 (1995) 177–181CrossRefGoogle Scholar
  82. [82]
    Bunde, A.; Funke, K.; Ingram, M.D.: Ionic glasses: History and challenges. Solid State Ionics 105 (1988) 1–13CrossRefGoogle Scholar
  83. [83]
    Weidlein, J.: Müller, U.; Dehnicke, K.: Schwingungsspektroskopie: eine Einführung. Georg Thieme Verlag, Stuttgart, 1982Google Scholar
  84. [84]
    Günzler, H.; Heise, H.M.: IR-Spektroskopie: eine Einführung. VCH, Weinheim, 1996Google Scholar
  85. [85]
    Skoog, D.A.; Leary, J.J.: Instrumentelle Analytik. Springer, Berlin, 1996CrossRefGoogle Scholar
  86. [86]
    Fuxi, G.: Optical and Spectroscopic Properties of Glass. Springer, Berlin 1992Google Scholar
  87. [87]
    Murata, T.; Takebe, H.; Morinaga, K.: Compositional dependence of infrared-to-visible upconversion in Yb3+-and Er3+-codoped germanate, gallate, and tellurite glasses. J.Am. Ceram. Soc. 81 (1998) 249–251CrossRefGoogle Scholar
  88. [88]
    Wang, J.; Lincoln, J.R.; Brocklesby, W.S.; Deol, R.S.; Mackechnie, C.J.; Pearson, A.; Tropper, A.C; Hanna, D.C; Payne, D.N.: Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm3+. J. Appl. Phys. 73 (1993) 8066–8075CrossRefGoogle Scholar
  89. [89]
    Pan, Z.; Morgan, S.H.: Optical transitions of Er3+ in lead-tellurium-germanate glasses. J. Luminescence 75 (1997) 302–308CrossRefGoogle Scholar
  90. [90]
    Wasylak, J.: New glasses of shifted absorption edge in infrared as materials for optics and light fiber technique. Opt. Eng. 36 (1997) 1652–1656CrossRefGoogle Scholar
  91. [91]
    Poulain, M.; Poulain, M.; Lucas, J.; Brun, P.: Mater. Res. Bull. 10 (1975) 243CrossRefGoogle Scholar
  92. [92]
    France, P. W: Fluoride Glass Optical Fibres. Boca Raton, Blackie 1990CrossRefGoogle Scholar
  93. [93]
    Jordan, W. G.; Animesh Jha; Lunt, M.; Davey, S.T.; Wyatt, R.; Rothwell, W.J.: The optical properties of ZrF4 based glasses with extended Pr3+:1G43H5 fluorescence lifetimes. Journal of Non-Crystalline Solids 184 (1995) 5–8CrossRefGoogle Scholar
  94. [94]
    Qiu, J.; Maeda, K.; Konishi, A.; Terai, R.; Kadono, K.: Influence of various divalent metal fluoride s on the properties of glasses in the ZrF4-AlF3system. Journal of Non-Crystalline Solids 184 (1995) 109–113CrossRefGoogle Scholar
  95. [95]
    Soufiane, A.; Messaddeq, Y.; Poulain, M.; Costa, B.J.: Stabilization of fluoroindate glasses by magnesium fluoride. Journal of Non-Crystalline Solids 213-214 (1997) 85–89CrossRefGoogle Scholar
  96. [96]
    Annapurna, K.; Hanumanthu, M.; Buddhudu, S.: Fluorescence properties of Nd3+-doped InF3 based optical glasses. Spectrochimica Acta 48A (1992) 791–797Google Scholar
  97. [97]
    de Araújo, C.R; Gomes, A.S.L.; Acioli, L.H.; Maciel, G.S.; Menezes, L. de S.; de Araújo, L.E.E.; Messaddeq, Y.; Aegerter, M.A.: Rare-earth doped fluoroindate glasses: glass formation, energy transfer properties and frequency upconversion. Trends in Chemical Physics 4 (1996) 59–74Google Scholar
  98. [98]
    Bahl, A.; Unrau, U.: unveröffentlichte Arbeiten, 1998Google Scholar
  99. [99]
    Nishida, Y.; Kanamori, T.; Sakamoto, T.; Ohishi, Y.; Sudo, S.: Development of PbF2GaF3InF3ZnF2YF3LaF3 glass for use as a 1.3 μm Pr3+-doped fiber amplifier host. Journal of Non-Crystalline Solids 221 (1997) 238–244CrossRefGoogle Scholar
  100. [100]
    Rigout, N.; Adam, J.L; Lucas, J: BIG fluoride glass optical fibers with improved NA. Journal of Non-Crystalline Solids 161 (1993) 161–164CrossRefGoogle Scholar
  101. [101]
    Adam, J.L.; Ricordel, C; Lucas, J.; New compositions of low phonon energy fluoride and chloro-fluoride glasses. Journal of Non-Crystalline Solids 213 & 214 (1997) 30–35CrossRefGoogle Scholar
  102. [102]
    Deol, R.S.; Hewak, D.W; Jordery, S.; Jha, A.; Poulain, M.; Baró, M.D.; Payne, D.N.: Improved fluoride glasses for 1.3 μm optical amplifiers. Journal of Non-Crystalline Solids 161 (1993) 257–261CrossRefGoogle Scholar
  103. [103]
    Seddon, A.R: Chalcogenide glasses: a review of their preparation, properties and applications. Journal of Non-Crystalline Solids 184 (1995) 44–50CrossRefGoogle Scholar
  104. [104]
    Schweizer, T.; Brady, D.J.; Hewak, D.W: Fabrication and spectroscopy of erbium doped lanthanum sulphide glass fibres for mid-infrared laser applications. Optics Express 1 (1997) 102CrossRefGoogle Scholar
  105. [105]
    Mosadegh, R.; Sanghera, J.S.; Schaafsma, D.; Cole, B.J.; Nguyen, V.Q.; Miklos, R.E.; Aggarwal, I.D.: Fabrication of single-mode chalcogenide optical fiber. Journal of Lightwave Technology 16 (1998) 214–217CrossRefGoogle Scholar
  106. [106]
    Voigt, R: Produktinformation von Vitron Spezialwerkstoffe GmbH, 1999Google Scholar
  107. [107]
    Brady, D.J.; Schweizer, T.; Wang, J.; Hewak, D.W.: Minimum loss predictions and measurements in gallium lanthanum sulphide based glasses and fibre. Journal of Non-Crystalline Solids 242 (1998) 92–98CrossRefGoogle Scholar
  108. [108]
    Hector, J.R.; Wang, J.; Brady, D.; Kluth, M.; Hewak, D.W.; Brocklesby, W.S.; Payne, D.N.: Spectroscopy and quantum efficiency of halide-modified gallium-Lanthanum sulfide glasses doped with praseodymium. Journal of Non-Crystalline Solids 239 (1998) 176–180CrossRefGoogle Scholar
  109. [109]
    Tawarayama, H.; Ishikawa, E.; Itoh, K.; Aoki, H.; Yanagita, H.; Okada, K.; Yamanaka, K.; Matsuoka, Y.; Toratani, H.: Efficient amplification at 1.3 μm in a Pr3+-doped Ga-Na-S fiber. Conference on Optical Amplifiers and Their Applications, 21-23 July 1997, Victoria B.C., Canada, Postdeadline paper PD1-1Google Scholar
  110. [110]
    Tawarayama, H.: unveröffentlichte Ergebnisse, 21. April 1999Google Scholar
  111. [111]
    France, P.W.: Fluoride Glass Optical Fibres. Boca Raton, Blackie 1990CrossRefGoogle Scholar
  112. [112]
    France, P.W.: Fluoride Glass Optical Fibres. Boca Raton, Blackie 1990CrossRefGoogle Scholar
  113. [113]
    Brady, D.J.; Schweizer, T.; Wang, J.; Hewak, D.W.: Minimum loss predictions and measurements in gallium lanthanum sulphide based glasses and fibre. Journal of Non-Crystalline Solids 242 (1998) 92–98CrossRefGoogle Scholar
  114. [114]
    Szebesta, D.; Davey, S. T.; Williams, J.R.; Moore, M. W.: OH Absorption in the low loss window of ZBLAN(P) glass fibre. Journal of Non-Crystalline Solids 161 (1993) 18–22CrossRefGoogle Scholar
  115. [115]
    Fujiura, K.; Kanamori, T.; Ohishi, Y.; Terunuma, Y.; Nakagawa, K.; Sudo, S.; Sugii, K.: Fabrication of low-loss and high-Δn single-mode fluoride fiber for 1.3 μm praseodymium-doped amplifiers. Applied Physics Letters 67 (1995) 3063–3065CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • N. Schunk
  • A. Bahl
  • U. Unrau

There are no affiliations available

Personalised recommendations