Advertisement

Optische Modulatoren und Schalter

  • D. Hoffmann
Chapter

Zusammenfassung

Die Forderung nach höherer ßbertragungskapazität optischer ßbertragungssysteme, d.h. höherer Bandbreite gilt gleichermaßen für Komponenten wie Phasen- und Amplitudenmodulatoren. Ihre Funktion basiert auf verschiedenartigen Wechselwirkungen im Festkörper, die je nach Material unterschiedlich ausfallen. Die Effizienz der Effekte läßt sich in miniaturisierten Strukturen der integrierten Optik intensivieren, denn die elektrische Feldstärke steigt mit sinkendem Elektrodenabstand.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Kogelnik, H.: „Limitsin Integrated Optics“, Proc. of the IEEE, vol. 69, no. 2, 232–238 (1981)Google Scholar
  2. [2]
    Ghosh, G.: J.Am. Ceram.Soc., vol. 78, 218–220 (1995)Google Scholar
  3. [3]
    Ghosh, G.: „Handbook of Thermo-Optic Coefficients of Optical Materials with Applications“, Academic Press San Diego London Boston New York Sydney Tokyo Toronto 1998Google Scholar
  4. [4]
    Yariv, A.; Xeh, P.: Optical Waves in Crystals, Wiley, NewYork 1984Google Scholar
  5. [5]
    Kaminow, I.P. et al.: „Crystallographic and electrooptic properties of cleaved LiNbO3“, J.Appl.Phys., vol. 51, no. 8, 4379–4384 (1980)Google Scholar
  6. [6]
    Kaminow, I.P.: „Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3“, Phys.Rev., vol. 160, no. 3, 519–522 (1967)Google Scholar
  7. [7]
    Maldonado, Th.A.: „Electro-Optic Modulators“ in Handbook of Optics Volume II Devices, Measurements and Properties“, Chapter 13, Michael Bass Ed., McGraw-HillGoogle Scholar
  8. [8]
    Bennett, B.R.; Sorel, R.A.; del Alamo, J.A.: „Carrier-induced change in refractive index of InP,GaAs, and InGaAsP“, IEEE J: Quant.Electr., vol. 26,no. 1, 113–122 (1990)Google Scholar
  9. [9]
    Kramers, H.A.: „La diffusion de la lumière par les atomes“, Atti del congresso internazionale dei fisici vol. 11-35, 545–557 (1927)Google Scholar
  10. [10]
    Kramers, H.A.:„Die Diserpsion and Absorption von Röntgenstrahlen“, Physik.Zeitschr.XXX, 522–523 (1929)Google Scholar
  11. [11]
    Kronig, De L.R.: „On the theory of dispersion of X-rays“, J. Opt. Soc. Am. and Rev. Sci.Instrum.,vol.12, no. 6, 547–557 (1926)Google Scholar
  12. [12]
    Wolff, P.A.: „Theory of the band structure of very degenerate semiconductors“, Phys. Rev., vol. 126, 405–412 (1962)Google Scholar
  13. [13]
    Henry, C.H.; Logan, R.A.; Bertness, K.A.: „Spectral dependence of the change in refractive index due to carrier injection in GaAs lasers“,J.Appl. Phys., vol. 52, 4457–4461 (1981)Google Scholar
  14. [14]
    Franz, W.: „Einfluß eines elektrischen Feldesauf eine optischeAbsorptionskante“, Z. Naturforschg. 13a, 484–489 (1958)Google Scholar
  15. [15]
    Kowalsky, W.; Schlachetzki, A.; Fiedler, F.: Physica Status Solidi,vol.68a, 153 ff., 1981Google Scholar
  16. [16]
    Seraphin, B.O.; Bennett, H.E.: In: Semiconductors and Semimetals,vol.3 (Editors: R.K. Willardson and A.C. Beer), Academic Press, New York, London, 499–543 (1967)Google Scholar
  17. [17]
    Urbach, F.: „The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids“,Phys. Rev. 92, 1324 (1953)Google Scholar
  18. [18]
    Fiedler, F.; Schlachetzki, A.: „Optical Parameters of InP-based waveguides“, Solid-State Electronics, vol.30,no. 1, 73–83 (1987)Google Scholar
  19. [19]
    Weihofen, R. Weiser, G.: „Optical Study of Valence Bnd Splitting in Weakly Strained In1-xGaxAsyP1-y/InP Heterostructures“, Phys.Stat.Sol.(b), vol. 179, 563–577 (1993)Google Scholar
  20. [20]
    Mähnß, J: „Integriert-Opt ische Wellenleitermodulatoren in InGaAsP/InP Herstellung,Charakterisierung, Berechnung“,Fortschr.-Ber, VDI, Reihe 9,Nr. 117. Düsseldorf: VDI-Verlag (1991)Google Scholar
  21. [21]
    Campi, D. Villavecchia, C: „Excitonic Properties in Semiconductor Quantum Wells: Numerical Calculations and Scaling Behavior“,IEEE J.Quant.Electron., vol.28, no. 8, 1765–1772 (1992)Google Scholar
  22. [22]
    Lengyel, G.; Jelly K.W.; Engelmann, R.W.H.: „A Semi-Empirical Model for Electroabsorption in GaAs/AIGaAs Multiple Quantum Well Modulator Structures“,IEEE J. Quant. Electron., vol. 26, no. 2, 296–304 (1990)Google Scholar
  23. [23]
    Bastard, G.: Wave mechanics applied to semiconductor heterostructures, les editions de physique, 91944 Les V#x00FC;sCedex, France, Chapter VIIIGoogle Scholar
  24. [24]
    Wood, Th: „Multiple quantum well(MQW) waveguide modulators“, IEEE J. Light-wave Techn., vol.6, no. 6, 743–757 (1988)Google Scholar
  25. [25]
    Reier, F.: private Mitteilung; Houghton, D.C., Davies, M.; Dion, M.: „Design criteria for structurally stable, highly strained multiple quantum well devices“, Appl. Phys. Lett., vol. 64,no. 4, 505–507 (1994)Google Scholar
  26. [26]
    Yamaguchi, T. et al.: „Quantum well with mass-dependent width for polarization-intensiveoptical modulation“, in Integrated Photonics Research (IPR’94) Technical Digest Series,vol. 3 (Optical Society of America, Washington, DC, 1994, 263–265Google Scholar
  27. [27]
    Yamaguchi, T. et al.: „Polansation-intepent waveguide modulator using a novel quantum well with mass-dependent width for polarization-intensitive optical modulation“, IEEE Photon. Techn. Lett. vol. 6, 1442–1444 (1994)Google Scholar
  28. [28]
    Bleuse, J.: Bastard, G.; Voisin, P.: „Electric-Field-Induced Localizationand Oscillatory Electro-optical Properties of Semiconductor Superlattices“, Phys.Rev. Lett., vol. 60,no. 3, 220–223 (1988)Google Scholar
  29. [29]
    Bleuse, J. et al.: „Blue shift of the absorption edge in AIGalnAs superlattices: Proposal for an original electro-optical modulator“, Appl. Phys.Lett., vol.53, no. 26, 2632–2634 (1988)Google Scholar
  30. [30]
    Bigan, E. et al.: „Optimization of Optical Waveguide Modulators Based on Wannier-Stark Localization: An Experimental Study“, IEEE J. Quant. Electron, vol.28, no. 1, 214–223 (1992)Google Scholar
  31. [31]
    Wegener, M. et al.: „Absorption and refraction spectroscopy of a tunable-electron-density quantum well and reservoir structure“, Phys. Rev.B., vol. 41, no. 5, 3097–3104 (1990)Google Scholar
  32. [32]
    Agrawal, N. et al.: „Electro-optic modulation by electron transfer in multiple InGaAsP/InP barrier, reservoir, and quantum well structures“, Appl. Phys. Lett., vol. 61, no. 3, 249–251 (1992)Google Scholar
  33. [33]
    Wang, J. et al.: „Speed response analysis of an electron-transfer multiple-quantum-well waveguide modulator“, J.Appl.Phys., vol. 73,no. 9, 4669–4679 (1993)Google Scholar
  34. [34]
    Agrawal, N.; Wegener, M.: „Ultrafast graded-gap electron transfer optical modulator structure“, Appl. Phys.Lett., vol. 65, no. 6, 685–687 (1994)Google Scholar
  35. [35]
    McCaughan, L; Murphy, E.: „Influence of temperature and initial titanium dimensions on fiber-to Ti: LiNbO3 waveguide insertion loss at λ= 1,3 μm“, IEEE J. Quant. Electron., vol. QE-19, no. 2, 131–135 (1983)Google Scholar
  36. [36]
    Saad, S.M.: „Review of numerical methods for the analysis of arbitrarily-shaped microwave and optical dielectric waveguides“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-33, no. 10, 894–899 (1985)Google Scholar
  37. [37]
    Chiang, K.S.: „Review of numerical and approximae methods for the modal analysis of general optical dielectric waveguides“, Optical and Quantum Electronics, vol. 26, S113–S134 (1994)Google Scholar
  38. [38]
    Chiang, K.S.: „Dual effective-index method for the analysis of rectangular dielectric waveguides“, Appl. Opt., vol. 25, no. 13, 2169–2174 (1986)Google Scholar
  39. [39]
    Bierwirth, K.; Schulz, N.; Arndt, F.: „Finite-Difference Analysis of Rectangular Dielectric Waveguide Structures“, IEEE Trans. Microwave Theory Tech., vol. MTT-34, no. 11, 1104–1114 (1986)Google Scholar
  40. [40]
    Koshiba, M.; Hayata, K.; Suzuki, M.: „Finite-Element Formulation in Terms of the Electric-Field Vector for Electromagnetic Waveguide Problems“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT_33, no. 10, 900–905 (1985)Google Scholar
  41. [41]
    Pregla, R.; Pascher, W.: „The Method of Lines“, in T. Itoh (editor), Numerical Techniques for Microwave and Millimeter-Wave Passive Structures, J. Wiley Publ., New York, 381–446 (1989)Google Scholar
  42. [42]
    Felt, M.D.; Fleck, J.A.: „Light propagation in graded-index optical fibers“, Appl. Opt., vol. 17,no. 24, 3990–3998 (1978)Google Scholar
  43. [43]
    Kogelnik, H.: Theory of dielectric waveguides in T. Tamir, Ed. Integrated Optics, Berlin, Springer, 1975Google Scholar
  44. [44]
    Alferness, R.C.: „Waveguide Electrooptic Modulators“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-30, no. 8, 1121–1137 (1982)Google Scholar
  45. [45]
    Marcuse, D.: „Optimal Electrode Designfor Integrated Optics Modulators“, IEEE J. Quant. Electron., vol. QE-18, no. 3, 393–398 (1982)Google Scholar
  46. [46]
    Ramer, O.G.: „Integrated Optic Electrooptic Modulators Electrode Analysis“, IEEE J. Quant. Electron., vol. QE-18, no. 3, 386–392 (1982)Google Scholar
  47. [47]
    Thylen, L.; Granestrand, P.: „Integrated Optic Electrooptic Device Electrode Analysis: The Influence of Buffer Layers“, J. Opt. Commun., vol. 7, 11–14 (1986)Google Scholar
  48. [48]
    Handbook of Microwave and optical components, vol. 1, Microwave passive and antenna components, Kai Chang Ed., John Wiley &Sons, NewYork Chichester Brisbane Toronto Singapore, S.25Google Scholar
  49. [49]
    Parsons, N.J.; O’Donnel, A.C.; Wong, K.K.: „Design of efficient and wideband travelling-wave modulators“, Proc. SPIE Integrated Optical Circuit Engineering III, vol. 651, 148–153 (1986)Google Scholar
  50. [50]
    Chen, F.S.: „Modulators for optical communications“,Proc. IEEE, vol. 58, no. 10, 1440–1456 (1970)Google Scholar
  51. [51]
    Sakamoto, S.R.; Spickermann, R.; Dagli, N.: „Narrow gap coplanar slow wave electrode for travelling wave electro-optic modulators“, Electro.Lett., vol. 31, no. 14, 1183–1185 (1995)Google Scholar
  52. [52]
    Kubota, K.; Noda, J.; Mikami, O.: „Traveling wave optical modulator using a directional coupler LiNbO3 waveguide“, IEEE J. Quant. Electron., vol. QE-16, no. 7, 754–760 (1980)Google Scholar
  53. [53]
    Walker, R.G.: „High-speed III-IV semiconductor intensity modulators“, IEEE J. Quant. Electron., vol. 27, no. 3, 654–667 (1991)Google Scholar
  54. [54]
    Ctyroky, J. et al.: „3- Analysis of LiNbO3:Ti Channel Waveguides and Directional Couplers“, IEEE J. Quant.Electron., vol. QE-20, no. 4, 400–409 (1984)Google Scholar
  55. [55]
    Feit, M.D.; Fleck, J.A.; McCaughan, I.: „Comparison of calculated and measured performance of diffused channel-waveguide couples“, J. Opt.Soc.Am., vol. 73, no. 10, 1296–1304 (1983)Google Scholar
  56. [56]
    Komatsu, K. et al.: „Low-Loss Broad-Band LiNbO3 Guided-Wave Phase Modulators Using Titanium/ Magnesium Double Diffusion Method“, J. Lightw. Techn., vol. LT-5, no. 9, 1239–1245 (1987)Google Scholar
  57. [57]
    Becker, P. et al.:„Er-diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelength“, Appl. Phys. Lett., vol. 61, no. 11, 1257–1259 (1992)Google Scholar
  58. [58]
    Jackel, J.L.; Rice, C.E.; Veselka, J.J.: „Proton exchange for high-index waveguides in LiNbO3“, Appl.Phys. Lett., vol. 47, no. 7, 607–608 (1982)Google Scholar
  59. [59]
    Schmidt, R.V.; Cross, P.S.; Glass, A.M.: „Optically induced crosstalk in LiNbO3 waveguide switches“, J. Appl.Phys. vol. 51, no. 1, 90–93 (1980)Google Scholar
  60. [60]
    Yamada, S.; Minakata, M.: „DC drift phenomena in LiNbO3 optical waveguide devices“ Jap. J. Appl. Phys. vol. 20, no. 4, 733–737 (1981)Google Scholar
  61. [61]
    Gee, C.M. et al.: „Minimizing de drift in LiNbO3 waveguide devices“ Appl. Phys. Lett., vol. 47, no. 3, 211–213 (1985)Google Scholar
  62. [62]
    Sreenivas, K. et al.: „Preparation and characterization of rf sputtered indium tin oxide films“ J. Appl. Phys. vol. 57, no. 2, 384–392 (1985)Google Scholar
  63. [63]
    Hamberg, I.; Granqvist, C.G.: „„Evaporated Sn-doped In2O3films: Basic optical properties and applications to energy-efficient windows“ J. Appl. Phys. vol. 60, no. 11, R123–RI59 (1986)Google Scholar
  64. [64]
    Bulmer, C.H.; Burns, W.K.: „Pyroelectric effects in LiNbO3 channel waveguide devices“, Appl. Phys. Lett., vol. 48, no. 16, 1036–1038 (1986)Google Scholar
  65. [65]
    Ctyroky, J. et al.: „Integrated electrooptic modulators and switches in LiNbO3“, Kybernetika (Czechoslovakia), vol. 26, no. 3, 171–190 (1990)Google Scholar
  66. [66]
    Nagata, H.; Ichikawa, J: „Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators“, Opt. Eng., vol. 34, no. 11, 3284–3293 (1995)Google Scholar
  67. [67]
    Nagata, H.; Oikawa, S.; Yamada, M.: „Comments on fabrication for reducing thermal drift on LiNbO3 optical modulators“, Opt. Eng., vol. 36, no. 1, 283–286 (1997)Google Scholar
  68. [68]
    Kawachi, M.: „Silica waveguides on silicon and their application to integrated-optic components“, Optical and Quantum Electronics, vol. 22, 391–416 (1990)Google Scholar
  69. [69]
    Miya, T.: „Silica-Based Planar Lightwave Circuits: Passive and Thermally Active Devices“, IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 1, 38–45 (2000)Google Scholar
  70. [70]
    Okuno, M. et al.: „Silica-based thermo-optic switches“, NTT Review vol. 7, no. 5, 57–63 (1995)Google Scholar
  71. [71]
    Keil, N.; Yao, H.H.; Zawadzki, C: „Polymer waveguide optical switch with ‘-40 dB polarisation independent crosstalk“, Electron. Lett., vol. 32, no. 7, 655–657 (1996)Google Scholar
  72. [72]
    Hida, Y.; Onose, H.; Imamura, S.: „Polymer Waveguide thermooptic switch with low electric power consumption at 1,3 μm“, IEEE Phot. Techn, Lett., vol. 5, no. 7, 82–84 (1993)Google Scholar
  73. [73]
    Kitoh, T. et al.: „Novel Broad-Band Optical Switch Using Silica-Based Planar Lightwave Circuit“, IEEE Phot. Techn. Lett., vol. 4, no. 7, 735–737 (1992)Google Scholar
  74. Lai, Q.; Hunziker, W.; Melchior, H.: „Low-Power Compact 2 x 2 Thermooptic Silica-on-Silicon Waveguide Switch with Fast Response“, IEEE Phot. Techn. Lett., vol. 10, no. 5, 681–683 (1998)Google Scholar
  75. [75]
    Yamada, Y. et al.: „Hybrid-Integrated 4 x 4 Optical Gate Matrix Switch Using Silica-Based Optical Waveguides and LD Array Chips“, IEEE J. Lightw. Techn., vol. 10, no. 3, 383–390 (1992)Google Scholar
  76. [76]
    Okuno, M. et al.: „8 x 8 Optical Matrix Switch Using Silica-Based Planar Lightwave Circuits“, IEICE Trans. Electron., vol. E76-C, no. 7, 1215–1223 (1993)Google Scholar
  77. [77]
    Goh, T. et al.: „Low-Loss and High Extinction-Ratio Silica-Based Strictly Nonblocking 16 x 16 Thermooptic Matrix Switch“, IEEE Phot. Techn. Lett., vol. 10, no. 6, 810–812 (1998)Google Scholar
  78. [78]
    Teng, C.C.; Mortazavi, M.A.; Boudoughian, G.K.: „Origin of the poling induced optical loss in a nonlinear optical polymeric waveguide“, Appl. Phys. Lett., vol. 66, no. 6, 667–669 (1995)Google Scholar
  79. [79]
    Oh, M.-C. et al.: „Electro-optic polymer modulators operating in both TE and TM modes incorporating a vertically tapered cladding“, IEEE Phot. Techn, Lett., vol. 9, no. 9, 1232–1234 (1997)Google Scholar
  80. [80]
    Keil, N.; Yao, H.H.; Zawadzki, C.:„Integrated optical switching devices for telecommunications made on plastics“, Plastics in Telecommunications VIII, London 14th-16th September, 11–17 (1988)Google Scholar
  81. [81]
    Fischbeck, G. et al.: „Design concept for singlemode polymer waveguides“, Electron. Lett., vol. 32, no. 3, 212–213 (1996)Google Scholar
  82. [82]
    Moosburger, R.; Petermann, K.: „4 x 4 Digital optical matrix switch using polymeric oversized rib waveguides“, IEEE Phot. Techn. Lett., vol. 10, no. 5, 684–686 (1998)Google Scholar
  83. [83]
    Roß, L.: „Integrated optical components in substrate glasses“, Glastech. Ber., vol. 62, no. 8, 285–297 (1989)Google Scholar
  84. [84]
    Noguchi, K.; Miyazawa, H.; Mitomi, O.: „75 GHz broadband Ti:LiNbO3 optical modulator with ridge structure“, Electron. Lett. vol. 30, no. 12, 949–951 (1994)Google Scholar
  85. [85]
    Gopalakrishnan, G. et al.:„Performance and Modelling of Broadband LiNbO3 Travelling Wave Optical Intensity Modulators“, J. Lightw. Techn., vol. 12, no. 10, 1807–1819 (1994)Google Scholar
  86. [86]
    Mitomi, O.; Noguchi, K.; Miyazawa, H.: „Design of ultra-broad-band LiNbO3 optical modulators with ridge structure“, IEEE Trans. on Microwave Theory and Techniques, vol. MTT-43, no. 9, 2203–2207 (1995)Google Scholar
  87. [87]
    Lawetz, C. et al.: „Modulation Characteristics of semiconductor Mach-Zehnder Optical Modulators“, IEEE J. Lightw. Techn., vol. 15 no. 4, 697–703 (1997)Google Scholar
  88. [88]
    Findakly, T.; Chen, C: „Optical directional couplers with variable spacing“, Appl. Opt. vol. 17, no. 5, 769–773 (1978)Google Scholar
  89. [89]
    Burns, W.K.; Milton, A.F.: „An analytic solution for mode coupling in optical waveguide branches“, IEEE J. Quant. Electron., vol. QE-16, no. 4, 446–454, 1980Google Scholar
  90. [90]
    Granestrand, P. et al.: „Integrated optics 4 x 4 switch matrix with digital optical switches“, Electron. Lett., vol. 26, no. 1, 4–5 (1990)Google Scholar
  91. [91]
    Okayama, H.; Ushikubo, T.; Kawahara, M.: „Low drive voltage Y-branch digital optical switch“, Electron. Lett., vol. 27, no. 1, 24–26 (1991)Google Scholar
  92. [92]
    Silberberg, Y.; Perlmutter, P.; Baran, J.E: „Digital optical switch”“, Appl. Phys. Lett., vol. 51, no. 16, 1230–1232 (1987)Google Scholar
  93. [93]
    Burns, W.K.:„Shaping the digital switch“, IEEE Phot. Techn. Lett., vol. 4, no. 8, 861–863 (1992)Google Scholar
  94. [94]
    Moosburger, R. et al.: „Shaping the digital optical switch using evolution strategies and BPM“, IEEE Phot. Techn. Lett., vol. 9, no. 11, 1484–1186 (1997)Google Scholar
  95. [95]
    Keil, N.; Yao, H.H.; Zawadzki, C.: „Polymeric optical switches, Integrated Photonics Research, March 30-April 1, 1998, Technical Digest, 353–355Google Scholar
  96. [96]
    Syms, R.R.A.:„The digital directional coupler: improved design“, IEEE Phot. Techn. Lett. vol. 4, no. 10, 1135–1138 (1992)Google Scholar
  97. [97]
    Xie, S. et al.: „Carrier-injected GaI-nASP/InP duirectional coupler optical switch with both tapered velocity and tapered coupling“, IEEE Phot. Techn. Lett., vol. 4, no. 2, 166–169 (1992)Google Scholar
  98. [98]
    Shimomura, K.; Arai, K.:„Semiconductor waveguide optical switches and modulators“, Fiber and Integrated Optics, vol. 13, 65–100 (1992)Google Scholar
  99. [99]
    Shimomura, K. et al.: „2 V drive-voltage switching operation in 1,55 μn GaInAS/InP MQW structure“, Electron. Lett. vol. 28, no. 10, 955–957 (1992)Google Scholar
  100. [100]
    Heidrich, H.; Hoffmann, D.:„Review on integrated-optics switch matrices on LiNbO3“, Trans. IEICE, vol. E73, no. 1, 94–98 (1990)Google Scholar
  101. [101]
    Linke, R.A.:„Modulation induced transient chirping in single frequency lasers“, IEEE J. Quant. Electron., vol. QE-21, no. 6, 593–597 (1985)Google Scholar
  102. [102]
    Wakita, K.; Kotaka, I.: „Multiple-quantum-well optical modulators and their monolithic integration with DFB lasers for optical-fiber communications“, Microwave-and-Optical-Technology-Letters (USA), vol. 7,no. 3, p. 120–128, 20 Feb. 1994Google Scholar
  103. [103]
    Mitomi, O.; Wakita, K.; Kotaka, I.:„Chirping characteristics of electroabsorption-type optical-intensity modulator“, IEEE Phot. Techn. Lett. vol. 6, no. 2, 205–207 (1994)Google Scholar
  104. [104]
    Kawano, K. et al.: „Polarisation-insensitive travelling wave electrode electroabsorption (TW-EA) modulator with bandwidth over 50 GHz and driving voltage less than 2V“, Electron. Lett. vol. 33, no. 18, 1580–1581 (1997)Google Scholar
  105. [105]
    Koyama, F.; Iga, K.: „Frequency chirping in external modulators“, IEEE J. Lightw. Techn., vol. 6, no. 1, 87–92 (1988)Google Scholar
  106. [106]
    Devaux, F.; Sorel, Y.; Kerdiles, J.P.:„Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitters“, J. Lightw. Techn., vol. 11, no. 12, 1937–1940 (1993)Google Scholar
  107. [107]
    Marcuse, D.:„DFB laser with attached external intensity modulator“, IEEE J. Quant. Electron., vol. 26, no. 2, 262–269 (1990)Google Scholar
  108. [108]
    Jerrard, H.C.: „Transmission of light through birefringent and optically active media: the Poincare’sphere“, J. Opt. Soc. Am., vol. 44, no. 5, 634–640 (1954)MathSciNetGoogle Scholar
  109. [109]
    Maldonado, T.A.; Gaylord, T.K.: „Electrooptic effect calculations: simplified procedure for arbitrary cases“, Appl. Opt., vol. 27, no. 24, 5051–5066 (1988)Google Scholar
  110. [110]
    Alferness, R.C.: „Efficient waveguide electro-optic TE ~ TM mode converter/wavelength filter“, Appl. Phys. Lett., vol. 36, no. 7, 513–515 (1980)Google Scholar
  111. [111]
    Schlak, M. et al.:„Tunable TE/TM-Mode converter on (001)-InP-substrate“, PhotoTechn. Lett. vol. 3, no. 1, 15.16 (1991)Google Scholar
  112. [112]
    Jaeger; N.A.P. et al.:„Velocity-matched electrodes for compound semiconductor travelling wave electrooptic modulators: Experimental results“, IEEE Microwave Guided Wave Lett., vol. 6, 82–84, Feb. 1996Google Scholar
  113. [113]
    Rahmatian, F. et al.:„An ultrahigh-speed AlGaAs-GaAs polarization converter using slow-wave coplanar electrodes“, IEEE Photon. Techn. Lett., vol. 10, no. 5, 675–677 (1998)Google Scholar
  114. [114]
    Thaniyavarn, S.:„Wavelength independent, optical damage immune Z-propagation LiNbO3 waveguide polarization converter“, Appl. Phys. Lett., vol. 47, no. 7, 674–677 (1985)Google Scholar
  115. [115]
    Thaniyavarn, S.: „Wavelength independent, optical-damage-immune LiNbO3 waveguide TE-TM converter“, Opt. Lett., vol. 11, no. 1, 39–41 (1986)Google Scholar
  116. [116]
    Haruna, M.; Shimada, J.: Nishihara, H.:„An efficient TE-TM mode converter using a z-propagation LiNbO3 waveguide“, The transactions of the IECE of Japan, vol. E69, no. 4, 418–419 (1986)Google Scholar
  117. [117]
    Heidrich, H. et al.: „Passive Mode Converter with a periodically tilted InP/GaInAs P rib waveguide“, IEEE Photon. Techn. Lett., vol. 4, no. 1, 34–36 (1992)Google Scholar
  118. [118]
    Shani, Y. et al.:„Polarisation rotation in asymmetric loaded rib waveguides“, Appl. Phys. Lett. Vol. 59, no. 11, 1278–1280 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • D. Hoffmann

There are no affiliations available

Personalised recommendations