Advertisement

Faseroptische Komponenten

  • R. Zengerle
  • E. Brinkmeyer

Zusammenfassung

Unter „Faseroptischen Komponenten” werden solche verstanden, bei denen die Glasfaser selbst oder diese aufgrund spezieller Bearbeitung (Modifikation) eine zentrale Funktionalität ausübt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Spezielle Literatur

  1. [1]
    Lipson, J. and Harvey, G.T.: Low-loss wavelength division multiplexing (WDM) devices for single-mode systems. Journal of Lightwave Technology 1 (1983) 387–390CrossRefGoogle Scholar
  2. [2]
    Takagi, A. et al.: Wavelength characteristics of (2x2) optical channel-type directional couplers with symmetric and nonsymmetric coupling structures. Journal of Lightwave Technology 10 (1992) 735–746CrossRefGoogle Scholar
  3. [3]
    Mortimore, D.B.: Wavelength-flattened fused couplers. Electronics Letters 21Electronics Letters (1985) 742–743CrossRefGoogle Scholar
  4. [4]
    OPLINK,Produkt Katalog 2000Google Scholar
  5. [5]
    Morishita, K. and Tahara, T.: Wavelength-insensitive couplers in form of all-fibre Mach-Zehnder interferometer. Electronics Letters 27 (1991) 1200–1202CrossRefGoogle Scholar
  6. [6]
    TECOS Telecommunications Systems, Produkt KatalogGoogle Scholar
  7. [7]
    Mortimore, D.B. and Arkwright, J. W.: Monolithic wavelength-flattened 1x 7 single-mode fused coupler. Electronics Letters 25 (1989) 606–607CrossRefGoogle Scholar
  8. [8]
    Nosu, K, and Watanabe, R.: Slab waveguide star coupler for multimode optical fibres. Electronics Letters 16 (1980) 608–609CrossRefGoogle Scholar
  9. [9]
    Zengerle, R. and Leminger, O.: Narrow-band wavelength-selective directional couplers made of dissimilar single-mode fibres. Journal of Lightwave Technology 5 (1987) 1196–1198CrossRefGoogle Scholar
  10. [10]
    Leminger, O., Zengerle, R.: Bandwidth of directional-coupler wavelength filters made of dissimilar optical fibres. Electronics Letters 23 (1987) 241–242CrossRefGoogle Scholar
  11. [11]
    Leminger, O. and Zengerle, R.: Narrow-band directional couplers made of dissimilar single-mode fibers with different cladding refractive indexes. Journal of Lightwave Technology 8 (1990) 1289–1291CrossRefGoogle Scholar
  12. [12]
    Archambault, J.L. et al.: Grating-frustrated coupler: a novel channel-dropping filter in single-mode optical fiber. Optics Letters 19 (1994) 180–182CrossRefGoogle Scholar
  13. [13]
    Whalen, M. S. et al.: Demonstration of a narrowband Bragg-reflect ion filter in a single-mode fibre directional coupler. Electronics Letters 22 (1986) 681–682CrossRefGoogle Scholar
  14. [14]
    Baumann, L. et al.: Compact all-fiber add-drop multiplexer using fiber Bragg gratings. IEEE Photon. Technol. Lett 8 (1997)Google Scholar
  15. [15]
    Zhang, F. and Lit, J.W.Y.: Direct-coupling single-mode fiber ring resonator. J. Opt. Soc. Am. A 5 (1988) 1347–1355CrossRefGoogle Scholar
  16. [16]
    Bao, Y. et al.: High-speed liquid crystal fiber Fabry-Perot tunable filter. OFC96, proceedings 90–91Google Scholar
  17. [17]
    McCallion, K. et al.: Tunable in-line fiber-optic bandpass filter. Optics Letters 19 (1994) 542–544CrossRefGoogle Scholar
  18. [18]
    Sorin, W.V. and Shaw, H. J.: A single-mode fiber evanescent grating reflector. Journal of Lightwave Technology 3 (1985) 1041–1043CrossRefGoogle Scholar
  19. [19]
    Ortega, B.and Dong, L.: Highly tunable mismatched twin-core fibre filters. ECOC98 Proceedings 31–32Google Scholar
  20. [20]
    Atkins, G.R. et al.: UV tuning of twin-core fiber demultiplexers. OFC 95 Proceedings 161–162Google Scholar
  21. [21]
    Ahmad, S.-J.and McKeeman, J.C.:All-fiber spectral filters with nonperiodic bandpass characteristics and high extinction ratios in the wavelength range 0.8 μm ‘λ ‘1.6 μm. Journal of Lightwave Technology 9 (1991) 959–963CrossRefGoogle Scholar
  22. [22]
    Tjugiarto, T. et al.: Bandpass filtering effect in tapered asymmetrical twin-core optic al fibres. Electronics Letters 29 (1993) 1077–1078CrossRefGoogle Scholar
  23. [23]
    Bilodeau, F. et al.: High-return-loss narrowband all-fiber bandpass Bragg transmission filter. IEEE Photo TechnoL. Lett. 6 (1994) 80–82CrossRefGoogle Scholar
  24. [24]
    Mizrahi, V. et al.: Four channel fibre grating demultiplexer. Electronics Letters 30 (1994) 780–781CrossRefGoogle Scholar
  25. [25]
    Huang, C.et al.: Ultra-low loss temperature-insensitive 16 channel 100-GHz dense wavelength division multiplexers based on cascaded all-fiber unbalanced Mach-Zehnder structure. OFC 99 proceedings paper TuH2 79–81Google Scholar
  26. [26]
    Johnson, D.C. et al.: New design concept for a narrowband wavelength-selective optical tap and combiner. Electronics Letters 23 (1987) 668–669CrossRefGoogle Scholar
  27. [27]
    Bakhti, F. et al.: Grating-assisted Mach-Zehnder OADM using cladding-photosensitive fibre for cladding mode suppression. OFC 99 proceedings paper TuN2 193–195Google Scholar
  28. [28]
    Park, H.S. et al.: All fiber add-drop multiplexer using a tilted fiber Bragg grating and mode-selective couplers. OFC 99 proceedings paper TuH6 91–93Google Scholar
  29. [29]
    Hoffmann, M. et al.: All-silicon bistable micromechanical fibre switches. Electronics Letters 34 (1998) 207–208.CrossRefGoogle Scholar
  30. [30]
    Lin, L. Y. et al.: High-density micromachined polygon optical crossconnects exploiting network connection-symmetry. IEEE Photonics Technology Letters 10 (1998) 1425–1427CrossRefGoogle Scholar
  31. [31]
    Hill, R.A. et al.: Polymeric in-line fiber modulator using novel processing techniques. OFC 96 Proceedings 166–167Google Scholar
  32. [32]
    Walker, N.G. and Walker, G. R.: Polarization control for coherent communications. Journal of Lightwave Technology 8 (1990) 438–458CrossRefGoogle Scholar
  33. [33]
    Johnstone, W. et al.: Surface plasmon polaritons in thin metal films and their role in fibre optic polarizing devices. Journal of Lightwave Technology 8 (1990) 538–544CrossRefGoogle Scholar
  34. [34]
    Zervas, M.N. and Giles, I.P: Optical Fibre Surface-Plasmon-Wave Polarizers with Enhanced Performance. Electron. Lett. 25 (1989) 321–323CrossRefGoogle Scholar
  35. [34a]
    Creaney, S. et al.: Low loss fibre optic polaris+ers using differential coupling to dielectric waveguide overlays. Electronics Letters 30 (1994) 349–351CrossRefGoogle Scholar
  36. [35]
    Zengerle, R. et al.: Large-spot laser diodes with stable carrier frequency by an external fiber grating. IPR 96 paper IThD3Google Scholar
  37. [36]
    Zengerle, R. et al.: Mode-locking in large-spot laser diodes with external fiber grating. Optics for Science and New Technology, SPIE Vol. 2778 (1996) 1080–1081Google Scholar
  38. [37]
    Knight, J.C. et al.: Properties of photonic crystal fiber and the effective index model. J.Opt. Soc.Am.A 15 (1998) 748–752CrossRefGoogle Scholar
  39. [38]
    Bjarklev, A. et al.: Dispersion properties of photonic crystal fibres. ECOC98, Proceedings 135–136Google Scholar
  40. [39]
    Birks, T.A. et al.: Single material fibres for dispersion compensation. OFC 99 proceedings paper FG2 108–110Google Scholar
  41. [40]
    SHOWA ELECTRIC WIRE & CABLE, Produkt KatalogGoogle Scholar
  42. [41]
    Riant, I. et al.: Gain equalization with optimized slanted Bragg grating on adapted fibre for multichannel long-haul submarine transmission. OFC 99 paper ThJ6 147–149Google Scholar
  43. [41a]
    Love, J.D. et al.: Tapered single-mode fibres and devices. IEE Proceedings-J 138 (1991) 343–354Google Scholar
  44. [42]
    Goldberg, J. and Koplow, J.: High power side-pumped Er/Yb doped fiber amplifier. OFC 99 proceedings paperWA7 19–21Google Scholar
  45. [42a]
    Mahlke, G. und Gössing, P.: Lichtwellenleiterkabel, Publicis MCD Verlag, 1998Google Scholar
  46. [43]
    Irie, T. et al: Fiber-integrated isolators with high performance. OFC 96 Proceedings 53–54Google Scholar

Faseroptische Gitter

  1. [1]
    Meltz, G.; Morey, W. W.; Glenn, W.H.: Formation of Bragg gratings in optical fibers by a transverse holographic method. In: Opt. Lett. 14 (1989), S. 823–825CrossRefGoogle Scholar
  2. [2]
    Kashyap, R.: Fiber Bragg Gratings. Academic Press, 1999Google Scholar
  3. [3]
    Campbell, R.J.; Kashyab, R.: The properties and applications of photosensitive germanosilicate fiber. In: Int. J.Optoelectron. 9 (1994), S. 33–57Google Scholar
  4. [4]
    Russell, P.St.J.; Archambault, J.-L.; Reekie, L.: Fibre gratings. In: Physics World (1993), S. 41–46Google Scholar
  5. [5]
    Bennion, I. et al.: UV-written in-fibre Bragg-gratings. In: Opt. Quantum Electron. 28 (1996), S. 93–135CrossRefGoogle Scholar
  6. [6]
    Hill, K.H.; Meltz, G.: Fiber Bragg grating technology: Fundamentals and overview. In: J. Lightwave Technol. 15 (1997), S. 1263–1276CrossRefGoogle Scholar
  7. [7]
    Hand, D.P.; Russell, P.St.J.: Photoinduced refractive-index changes in germanosilicate fibers. In: Opt. Lett. 15 (1990),S. 102–104CrossRefGoogle Scholar
  8. [8]
    Douay, M.: Densification involved in UV-Based photosensitivity of silica glasses and optical fibers. In: J. Lightwave Technol. 15 (1997), S. 1329–1342CrossRefGoogle Scholar
  9. [9]
    Lemaire, P.J. et al.: High pressure H2 loading as a technique for achieving ultrahigh UV photosensitivity in GeO2 doped optical fibers. In: Electron. Lett. 29 (1993), S. 1191–1193CrossRefGoogle Scholar
  10. [10]
    Hill, K.O. et al.: Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. In: Appl. Phsy. Lett. 32 (1978), S. 647–649CrossRefGoogle Scholar
  11. [11]
    Loh, W.H. et al.: Complex grating structures with uniform phase masks based on the moving fiberscanning beam technique. In: Opt. Lett. 20 (1995), S. 2051–2053CrossRefGoogle Scholar
  12. [12]
    Erdogan, T.: Fiber grating spectra. In: J. Lightwave Technol. 15 (1997), S. 1277–1294CrossRefGoogle Scholar
  13. [13]
    Yariv, A.: Optical Electronics in Modern Communications. Oxford University Press, 1997Google Scholar
  14. [14]
    Unger, H.-G.: Elektromagnetische Theorie für die Hochfrequenztechnik. Bd.2. Heidelberg: Hüthig Verlag, 1981Google Scholar
  15. [15]
    Brinkmeyer, E.: Simple algorithm for reconstruction fiber gratings from reflectometric data. In: Opt. Lett. (1995), S. 810–812Google Scholar
  16. [16]
    Poladian, L.: Analysis and modelling of group delay ripple in Bragggratings. In: OSA Technical Digest: Conference on Bragg Gratings, Photosensitivity and Polingin Glass Waveguides, 1999, S. 258–260Google Scholar
  17. [17]
    Erdogan, T.; Sipe, J.E.:Tilted fiber phase gratings. In: J. Opt.Soc.Amer.A 13(1996), S. 296–313CrossRefGoogle Scholar
  18. [18]
    Johlen, D.; Klose, P.; Ewald, A.; Brinkmeyer, E.: Non-reflecting narrow-band fiber optical Fabry-Perot transmission filter. In:OSA Technical Digest: Conference on Bragg Gratings, Photosensitivityand Poling in Glas sFibers and Waveguides: Application and Fundamentals, 1997, S. 42–44Google Scholar
  19. [19]
    Vengsarkar, M. et al.: Long Period fiber gratings as band-rejection filters. In: J. Lightwave Technol. 14 (1996), S. 58–65CrossRefGoogle Scholar
  20. [20]
    Giles, C.R. et al.: Lightwave applications of fiber Bragg gratings. In: J. Lightwave Technol. 15 (1997), S. 1391–1404CrossRefGoogle Scholar
  21. [21]
    Johlen, D.; Klose, P.; Renner, H.; Brinkmeyer, E.: Narrow-band-mode converting Fabry-Perot output coupler for fiber lasers. In: Proc. Conf. Opt. FiberComm. (OFC), San Jose, 1998. -paper FA4Google Scholar
  22. [22]
    Eggleton, B.J. et al.: Long period superstructure Bragg gratings in optical fibers. In: Electron. Lett. 30 (1994), S. 1620–1622CrossRefGoogle Scholar
  23. [23]
    Bilodeau, F. et al.: High-return-loss narrow-band a-fiber bandpass Braggtransmission Filter.In: IEEE Photon. Technol. Lett. 6 (1994), S. 80–82CrossRefGoogle Scholar
  24. [24]
    Archambault, J.L. et al.: Grating-frustated coupler: a novel channel-dropping filter in single-mode optical fiber. In: Opt. Lett. 19 (1994), Nr. 3, S. 180–183CrossRefGoogle Scholar
  25. [25]
    Ouellette, F.: Dispersion cancellationusing inearlychirped Bragg grating filtersin optical waveguides. In: Opt. Lett. 12 (1987), S. 847–849CrossRefGoogle Scholar
  26. [26]
    Archambault, J.-L.; Grubb, S.G.: Fiber gratings in lasers and amplifiers. In: J. Lightwave Technol. 15 (1997), S. 1378–1390CrossRefGoogle Scholar
  27. [27]
    Kersey, A.D.: Fiber grating sensors. In: J.Lightwave Technol. 15 (1997),S. 1442–1463CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • R. Zengerle
  • E. Brinkmeyer

There are no affiliations available

Personalised recommendations