Advertisement

Ösophaguskarzinom 1,2

  • Paul M. Schneider
  • Ralf Metzger
  • Stephan E. Baldus
  • Ute Warnecke-Eberz
  • Christiane J. Bruns
  • Jan Brabender
  • Oliver Stöltzing
  • Arnulf H. Hölscher
Chapter
Part of the Molekulare Medizin book series (MOLMED)

Zusammenfassung

Tumoren des ösophagus gehören in Deutschland zu den selteneren Erkrankungen, wobei Männer etwa 8mal häufiger betroffen sind als Frauen. 1992 erkrankten von 100000 männlichen Einwohnern etwa 8 Männer an einem Tumor der Speiseröhre (Bollschweiler 1997). Die meisten ösophaguskarzinome werden in einem späten Stadium diagnostiziert, dementsprechend schlecht ist die Prognose der Erkrankung. In den USA betrug die 5-Jahres-überlebensrate im Zeitraum von 1974- 19765% und zwischen 1989 und 1995 12% (Greenlee 2000). Die Gründe für diese statistisch signifikante Verbesserung sind nicht geklärt, sie sind aber am ehesten auf Verbesserungen in der Diagnostik und Therapic dieser hochmalignen Erkrankung zurückzuführen. Eine Heilung dieser Erkrankung ist nur durch eine chirurgische Resektion, in seltenen, sehr frühen Tumorstadien auch mittels endoskopischer Resektion möglich (Hölscher et al. 1997, Schneider et al. 1999a).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abdelatif OM, Chandler FW, Mills LR et al. (1991) Differential expression of c-myc and H-ras oncogenes in Barrett’s epithelium. A study using colorimetric in situ hybridization. Arch Pathol Lab Med 115:880–885PubMedGoogle Scholar
  2. Akiyama H, Tsurumaru M, Kawamura T et al. (1981) Principles of surgical treatment for carcinoma of the esophagus: analysis of lymph node involvement. Ann Surg 194:438–446PubMedCentralPubMedGoogle Scholar
  3. Akiyama H, Tsurumaru M, Udagawa H et al. (1997) Esophageal cancer. Curr Probl Surg 34:765–834PubMedGoogle Scholar
  4. Alderson D, Courtney SP, Kennedy RH (1994) Radical transhiatal oesophagectomy under direct vision. Br J Surg 81:404–407PubMedGoogle Scholar
  5. Altorki NK, Skinner DB (1990) Adenocarcinoma in Barrett’s esophagus. Semin Surg Oncol 6:274–278PubMedGoogle Scholar
  6. Altorki NK, Skinner DB, Segalin A et al. (1990) Indications for esophagectomy in nonmalignant Barrett’s esophagus:a 10-year experience. Ann Thorac Surg 49:724–727PubMedGoogle Scholar
  7. Altorki NK, Sunagawa M, Little AG et al. (1991) High-grade dysplasia in the columnar-lined esophagus. Am J Surg 161:97–100PubMedGoogle Scholar
  8. Anayama T, Furihata M, Ishikawa T et al. (1998) Positive correlation between p27Kipi expression and progression of human esophageal squamous cell carcinoma. Int J Cancer 79:439–443PubMedGoogle Scholar
  9. Anayama T, Furihata M, Takeuchi T et al. (2001) Insufficient effect of p27KIPI to inhibit cyclin D1 in human esophageal cancer in vitro. Int J Oncol 18:151–155PubMedGoogle Scholar
  10. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90:11995–11999PubMedCentralPubMedGoogle Scholar
  11. Arber N, Lightdale C, Rotterdam H et al. (1996) Increased expression of the cyclin D1 gene in Barrett’s esophagus. Cancer Epidemiol Biomarkers Prev 5:457–459PubMedGoogle Scholar
  12. Arii S, Mori A, Uchida S, Fujimoto K, Shimada Y, Imamura M (1999) Implication of vascular endothelial growth factor in the development and metastasis of human cancers. Hum Cell 12:25–30PubMedGoogle Scholar
  13. Armstrong D, Blum AL, Savary M (1992) Reflux disease and Barrett’s oesophagus. Endoscopy 24:9–17PubMedGoogle Scholar
  14. Auvinen M, Paasinen A, Andersson LC et al. (1992) Ornithine decarboxylase activity is critical for cell transformation. Nature 360:355–358PubMedGoogle Scholar
  15. Azuma M, Tamatani T, Fukui K et al. (1994) Identification of EGF as an angiogenic factor present in conditioned medium from human salivary gland adenocarcinoma cell clones with varying degrees of metastatic potential. Cancer Lett 84:189–198PubMedGoogle Scholar
  16. Badet J (1999) Angiogenin, a potent mediator of angiogenesis. Biological, biochemical and structural properties. Pathol Biol 47:345–351PubMedGoogle Scholar
  17. Bani-Hani K, Martin IG, Hardie LJ et al. (2000) Prospective study of cyclin Dl overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J Natl Cancer Inst 92:1316–1321PubMedGoogle Scholar
  18. Barrett MT, Sanchez CA, Galipeau PC et al. (1996) Allelic loss of 9p21 and mutation of the CDKN2/p16 gene develop as early lesions during neoplastic progression in Barrett’s esophagus. Oncogene 13:1867–1873PubMedGoogle Scholar
  19. Barrett MT, Sanchez CA, Prevo LJ et al. (1999) Evolution of neoplastic cell lineages in Barrett oesophagus. Nat Genet 22:106–109PubMedCentralPubMedGoogle Scholar
  20. Baylin SB, Herman JG, Graff JR et al. (1998) Alterations in DNA methylation; a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196PubMedGoogle Scholar
  21. Bennett WP, Brevern MC von, Zhu SM et al. (1997) p53 mutations in esophageal tumors from a high incidence area of China in relation to patient diet and smoking history. Cancer Epidemiol Biomarkers Prev 6:963–966PubMedGoogle Scholar
  22. Bestor TH, Ingram VM (1983) Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc Natl Acad Sci USA 80:5559–5563PubMedCentralPubMedGoogle Scholar
  23. Birgisson S, Rice TW, Easley KA et al. (1997) The lack of association between adenocarcinoma of the esophagus and gastric surgery: a retrospective study. Am J Gastroenterol 92:216–221PubMedGoogle Scholar
  24. Blot WJ (1989) Epidemiology of esophageal cancer. In: Roth JA, Ruckdeschel JC, Weissenburger TH (eds) Thoracic oncology. Saunders, Philadelphia, pp 295–304Google Scholar
  25. Blot WJ, Devesa SS, Fraumeni JF Jr (1993) Continuing climb in rates of esophageal adenocarcinoma: an update. JAMA 270:1320PubMedGoogle Scholar
  26. Blount PL, Meltzer SJ, Yin J et al. (1993) Clonal ordering of 17p and 5q allelic losses in Barrett dysplasia and adenocarcinoma. Proc Natl Acad Sci USA 90:3221–3225PubMedCentralPubMedGoogle Scholar
  27. Bollschweiler E, Schneider PM, Hölscher AH (1997) Increased incidence of adenocarcinomas in the esophagus and cardia-effect of epidemiologic data on developments in surgery. Langenbecks Arch Chir Suppl Kongressed 114:372–374Google Scholar
  28. Bollschweiler E, Wolfgarten E, Gutschow C, Hölscher AH (2001) Demographic variations in the rising incidence of esophageal adenocarcinoma in white males. Cancer 92: 549–555PubMedGoogle Scholar
  29. Bonelli L (1993) Barrett’s esophagus: results of a multicentric survey. G. O. S. P. E. (Gruppo Operativo per lo Studio delle Precancerosi Esofagee). Endoscopy 25:652–654 Boynton RF, Huang Y, Blount PL et al. (1991) Frequent loss of heterozygosity at the retinoblastoma locus in human esophageal cancers. Cancer Res 51:5766-5769PubMedGoogle Scholar
  30. Boynton R”F, Blount PL, Yin J et al. (1992) Loss of heterozygosity involving the APC and MCC genetic loci occurs in the majority of human esophageal cancers. Proc Natl Acad Sci USA 89:3385–3388PubMedCentralPubMedGoogle Scholar
  31. Brabender J, Lenz H-J, Danenberg PV (2000) Molecular marker as the basis for chemotherapy? Chirurg 71:1433–1439PubMedGoogle Scholar
  32. Brien TP, Odze RD, Sheehan CE et al. (2000) HER-2/neu gene amplification by FISH predicts poor survival in Barrett’s esophagus-associated adenocarcinoma [published erratum appears in Hum Pathol 2000 31:524]. Hum Pathol 31:35–39PubMedGoogle Scholar
  33. Bremner CG, Lynch VP, Ellis FH (1970) Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 68:209PubMedGoogle Scholar
  34. Brown LM, Swanson CA, Gridley G et al. (1995) Adenocarcinoma of the esophagus: role of obesity and diet. J Natl Cancer Inst 87:104–109PubMedGoogle Scholar
  35. Burgess AW, Thumwood CM (1994) The Sixth George Swanson Christie Memorial Lecture: growth factors and their receptors: new opportunities for cancer treatment. Pathology 26:453–463PubMedGoogle Scholar
  36. Bytzer P, Christensen PB, Damkier P et al. (1999) Adenocarcinoma of the esophagus and Barrett’s esophagus: a population-based study. Am J Gastroenterol 94:86–91PubMedGoogle Scholar
  37. Caldwell MT, Lawlor P, Byrne PJ et al. (1995) Ambulatory oesophageal bile reflux monitoring in Barrett’s oesophagus. Br J Surg 82:657–660PubMedGoogle Scholar
  38. Cameron AJ, Lomboy CT (1992) Barrett’s esophagus: age, prevalence, and extent of columnar epithelium. Gastroenterology 103:1241–1245PubMedGoogle Scholar
  39. Cameron AJ, Ott BJ, Payne WS (1985) The incidence of adenocarcinoma in columnar-lined (Barrett’s) esophagus. N Engl J Med 313:857–859PubMedGoogle Scholar
  40. Cameron AJ, Lomboy CT, Pera M et al. (1995) Adenocarcinoma of the esophagogastric junction and Barrett’s esophagus. Gastroenterology 109:1541–1546PubMedGoogle Scholar
  41. Casson AG, Mukhopadhyay T, Cleary KR et al. (1991) p53 gene mutations in Barrett’s epithelium and esophageal cancer. Cancer Res 51:4495–4499PubMedGoogle Scholar
  42. Chanvitan A, Puttawibul P, Casson AG (1997) Flow cytometry in squamous cell esophageal cancer and precancerous lesions. Dis Esophagus 10:206–210PubMedGoogle Scholar
  43. Chetty R, Chetty S (1997) Cyclin D1 and retinoblastoma protein expression in oesophageal squamous ceH carcinoma. Mol Pathol 50:257–260PubMedCentralPubMedGoogle Scholar
  44. Coggi G, Bosari S, Roncalli M et al. (1997) p53 protein accumulation ma.A molecular and immunohistochemical study with clinicopathologic correlations. Cancer 79:425–432PubMedGoogle Scholar
  45. Collard JM, Romagnoli R, Hermans BP, Malaise J (1997) Radical esophageal resection for adenocarcinoma arising in Barrett’s esophagus. Am J Surg 174:307–311PubMedGoogle Scholar
  46. Compton KR, Orringer MB, Beer DG (1999) Induction of glutathione S-transferase-pi in Barrett’s metaplasia and Barrett’s adenocarcinoma cell lines. Mol Carcinog 24: 128–l36PubMedGoogle Scholar
  47. Coppola D, Schreiber RH, Mora L et al. (1999) Significance of Fas and retinoblastoma protein expression during the progression of Barrett’s metaplasia to adenocarcinoma. Ann Surg Oncol 6:298–304PubMedGoogle Scholar
  48. Dawsey SM, Lewin KJ, Wang GQ et al. (1994) Squamous esophageal histology and subsequent risk of squamous cell carcinoma of the esophagus. A prospective follow-up study from Linxian, China. Cancer 74:1686–1692PubMedGoogle Scholar
  49. DeMeester TR, Attwood SE, Smyrk TC et al. (1990) Surgical therapy in Barrett’s esophagus. Ann Surg 212:528–540PubMedCentralPubMedGoogle Scholar
  50. Doki Y, Imoto M, Han E.K. et al. (1997) Increased expression of the P27KIP1 protein in human esophageal cancer cell lines that over-express cyclin D1. Carcinogenesis 18:1139–1148PubMedGoogle Scholar
  51. Drewitz DJ, Sampliner RE, Garewal HS (1997) The incidence of adenocarcinoma in Barrett’s esophagus: a prospective study of 170 patients followed 4.8 years. Am J Gastroenterol 92:212–215PubMedGoogle Scholar
  52. Duhaylongsod FG, Gottfried MR, Iglehart JD et al. (1995) The significance of c-erb B-2 and p53 immunoreactivity in patients with adenocarcinoma of the esophagus. Ann Surg 221:677–683PubMedCentralPubMedGoogle Scholar
  53. Eads CA, Lord RV, Kurumboor SK et al. (2000) Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res 60:5021–5026PubMedGoogle Scholar
  54. Ell C, May A, Gossner L et al. (2000) Endoscopic mucosal resection of early cancer and high-grade dysplasia in Barrett’s esophagus. Gastroenterology 118:670–677PubMedGoogle Scholar
  55. El-Rifai W, Harper JC, Cummings OW et al. (1998) Consistent genetic alterations in xenografts of proximal stomach and gastro-esophageal junction adenocarcinomas.Cancer Res 58:34–37PubMedGoogle Scholar
  56. Ewen ME (1994) The cell cycle and the retinoblastoma protein family. Cancer Metastasis Rev 13:45–66PubMedGoogle Scholar
  57. Fenoglio-Preiser CM (1999) Gastrointestinal pathology: an atlas and text, 2nd edn. Lippincott-Raven Press, Philadelphia, pp 93–132Google Scholar
  58. Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543PubMedGoogle Scholar
  59. Ferrara N, Houck K, Jakeman L et al. (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32PubMedGoogle Scholar
  60. Fink U, Stein HJ, Wilke H et al. (1995) Multimodal treatment for squamous cell esophageal cancer. World J Surg 19:198–204PubMedGoogle Scholar
  61. Flejou JF, Paraf F, Muzeau F et al. (1994) Expression of cerbB-2 oncogene product in Barrett’s adenocarcinoma: pathological and prognostic correlations. J Clin Pathol 47:23–26PubMedCentralPubMedGoogle Scholar
  62. Folkman J (1989) What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6Google Scholar
  63. Friess H, Fukuda A, Tang WH et al. (1999) Concomitant analysis of the epidermal growth factor receptor family in esophageal cancer: overexpression of epidermal growth factor receptor mRNA but not of c-erbB-2 and cerbB-3. World J Surg 23:1010–1018PubMedGoogle Scholar
  64. Gamieldien W, Victor TC, Mugwanya D et al. (1998) p53 and p1/CDKN2 gene mutations in esophageal tumors from a high-incidence area in South Africa. Int J Cancer 78:544–549PubMedGoogle Scholar
  65. Gamliel Z (2000) Incidence, epidemiology and etiology of esophageal cancer. Chest Surg Cancer 10:441–449Google Scholar
  66. Gammon MD, Schoenberg JB, Ahsan H et al. (1997) Tobacco, alcohol, and socioeconomic status and adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 89:1277–1284PubMedGoogle Scholar
  67. Garewal HS, Gerner EW, Sampliner RE et al. (1988) Ornithine decarboxylase and polyamine levels in columnar upper gastrointestinal mucosae in patients with Barrett’s esophagus. Cancer Res 48:3288–3291PubMedGoogle Scholar
  68. Garewal HS, Sampliner RE, Fennerty MB (1992) Chemopreventive studies in Barrett’s esophagus: a model premalignant lesion for esophageal adenocarcinoma. J Natl Cancer Inst Monogr 13:51–54PubMedGoogle Scholar
  69. Gerber HP, Dixit V, Ferrara N (1998a) Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273:13313–13316PubMedGoogle Scholar
  70. Gerber HP, McMurtrey A, Kowalski J et al. (1998b) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273:30336–30343Google Scholar
  71. Gerner EW, Garewal HS, Emerson SS et al. (1994) Gastrointestinal tissue polyamine contents of patients with Barrett’s esophagus treated with alpha-difluoromethylornithine. Cancer Epidemiol Biomarkers Prev 3:325–330PubMedGoogle Scholar
  72. Gleeson CM, Sioan JM, McGuigan JA et al. (1995) Base transitions at CpG dinucleotides in the p53 gene are common in esophageal adenocarcinoma. Cancer Res 55:3406–3411PubMedGoogle Scholar
  73. Gleeson CM, McDougall NI, Russell SE et al. (2000) Microsatellite analysis provides evidence of neoplastic transformation in long-segment, but not in short-segment, Barrett’s oesophagus. Int J Cancer 85:482–485PubMedGoogle Scholar
  74. Goldblum JR, Rice TW (1995) bcl-2 protein expression in the Barrett’s metaplasi-dysplasia-carcinoma sequence. Mod Pathol 8:866–869PubMedGoogle Scholar
  75. Gossner L, Stolte M, Sroka R et al. (1998) Photodynamic ablation of high-grade dysplasia and early cancer in Barrett’s esophagus by means of 5-aminolevulinic acid. Gastroenterology114:448–455PubMedGoogle Scholar
  76. Gray MR, Wallace HM, Goulding H et al. (1993) Mucosal zolyamine metabolism in the columnar lined oesophagus. Gut 34:584–587PubMedCentralPubMedGoogle Scholar
  77. Greenlee RT, Murray T, Bolden S, Wingo PA (2000) Cancer statistics 2000. CA Cancer J Clin 50:7–33PubMedGoogle Scholar
  78. Hagen JA, DeMeester SR, Peters JH, Chandrasoma P, DeMeester TR (2001) Curative resection for esophageal adenocarcinoma: analysis of 100 en bloc esophagectomies. Ann Surg 234:520–531PubMedCentralPubMedGoogle Scholar
  79. Hahn SA, Schutte M, Hoque AT et al. (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353PubMedGoogle Scholar
  80. Hamada M, Naomoto Y, Fujiwara T et al. (1996) Suppressed apoptotic induction in esophageal squamous cell carcinomas expressing extensive p53 protein. Jpn J C1in Oncol 26:398–404Google Scholar
  81. Hameeteman W, Tytgat GN, Houthoff HJ et al. (1989) Barrett’s esophagus: development of dysplasia and adenocarcinoma. Gastroenterology 96:1249–1256PubMedGoogle Scholar
  82. Hamilton SR, Smith RR (1987) The relationship between columnar epithelial dysplasia and invasive adenocarcinoma arising in Barrett’s esophagus. Am J Clin Pathol 87:301–312PubMedGoogle Scholar
  83. Hammoud ZT, Kaleem Z, Cooper JD et al. (1996) Allelotype analysis of esophageal adenocarcinomas: evidence for the involvement of sequences on the long arm of chromosome 4. Cancer Res 56:4499–4502PubMedGoogle Scholar
  84. Hayashi K, Metzger R, Salonga D et al. (1997) High frequency of simultaneous loss of p16 and p16beta gene expression in squamous ceH carcinoma of the esophagus but not in adenocarcinoma of the esophagus or Stomach. Oncogene 15:1481–1488PubMedGoogle Scholar
  85. Heby O, Persson L (1990) Molecular genetics of polyamine synthesis in eucaryotic cells. Trends Biochem Sci 15:153–158PubMedGoogle Scholar
  86. Hickey K, Grehan D, Reid IM et al. (1994) Expression of epidermal growth factor receptor and proliferating cell nuclear antigen predicts response of esophageal squamous cell carcinoma to chemoradiotherapy. Cancer 74:1693–1698PubMedGoogle Scholar
  87. Hirai T, Kuwahara M, Yoshida K et al. (1998) Clinical results of transhiatal esophagectomy for carcinoma of the lower thoracic esophagus according to biological markers. Dis Esophagus 11:221–225PubMedGoogle Scholar
  88. Hixson LJ, Garewal HS, McGee DL et al. (1993) Ornithine decarboxylase and polyamines in colorectal neoplasia and mucosa. Cancer Epidemiol Biomarkers Prev 2:369–374PubMedGoogle Scholar
  89. Hölscher AH, Dittler HJ, Siewert JR (1994) Staging of squamous esophageal cancer: accuracy and value. World J Surg 18:312–320PubMedGoogle Scholar
  90. Hölscher AH, Bollschweiler E, Bumm R et al. (1995a) Prognostic factors of resected adenocarcinoma of the esophagus. Surgery 118:845–855PubMedGoogle Scholar
  91. Hölscher AH, Bollschweiler E, Schneider PM et al. (1995b) Prognosis of early esophageal cancer. Comparison between adeno-and squamous cell carcinoma. Cancer 76:178–186Google Scholar
  92. Hölscher AH, Bollschweiler E, Schneider PM et al. (1997) Early adenocarcinoma in Barrett’s oesophagus. Br J Surg 84:1470–1473PubMedGoogle Scholar
  93. Hölscher AH, Metzger R, Schneider PM (2000) Preoperative radiochemotherapy of esophageal carcinoma.Light at the end of the tunnel? Zentralbl Chir 125:319–325PubMedGoogle Scholar
  94. Hunter T, Pines J (1994) Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell 79:573–582PubMedGoogle Scholar
  95. Iftikhar SY, James PD, Steele RJ et al. (1992) Length of Barrett’s oesophagus: an important factor in the development of dysplasia and adenocarcinoma. Gut 33:1155–1158PubMedCentralPubMedGoogle Scholar
  96. Igaki H, Sasaki H, Kishi T et al. (1994) Highly frequent homozygous deletion of the p16 gene in esophageal cancer cell lines. Biochem Biophys Res Commun 203:1090–1095PubMedGoogle Scholar
  97. Igarashi M, Dhar DK, Kubota H et al. (1998) The prognostic significance of microvessel density and thymidine phosphorylase expression in squamous cell carcinoma of the esophagus. Cancer 82:1225–1232PubMedGoogle Scholar
  98. Iihara K, Shiozaki H, Oku K (1993a) Growth-regulatory mechanism of two human esophageal-cancer cell lines in protein-free conditions. Int J Cancer 55:364–370PubMedGoogle Scholar
  99. Iihara K, Shiozaki H, Tahara H et al. (1993b) Prognostic significance of transforming growth factor-alpha in human esophageal carcinoma.Implication for the autocrine proliferation. Cancer 71:2902–2909PubMedGoogle Scholar
  100. Inada S, Koto T, Futami K et al. (1999) Evaluation of malignancy and the prognosis of esophageal cancer based on an immunohistochemical study (p53, E-cadherin, epidermal growth factor receptor). Surg Today 29:493–503PubMedGoogle Scholar
  101. Inoue K, Ozeki Y, Suganuma T et al. (1997) Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma.Association with angiogenesis and tumor progression.Cancer 79:206–213PubMedGoogle Scholar
  102. Ireland AP, Shibata DK, Chandrasoma P et al. (2000) Clinical significance of p53 mutations in adenocarcinoma of the esophagus and cardia. Ann Surg 231:179–187PubMedCentralPubMedGoogle Scholar
  103. Ishikawa F, Miyanzono K, Hellman U et al. (1989) Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature 338:557–562PubMedGoogle Scholar
  104. Ishikawa T, Furihata M, Ohtsuki Y et al. (1998) Cyclin D1 overexpression related to retinoblastoma protein expression as a prognostic marker in human oesophageal squamous cell carcinoma. Br J Cancer 77:92–97PubMedCentralPubMedGoogle Scholar
  105. Itakura Y, Sasano H, Shiga C et al. (1994) Epidermal growth factor receptor overexpression in esophageal carcinoma. An immunohistochemical study correlated with clinicopathologie findings and DNA amplification. Cancer 74:795–804PubMedGoogle Scholar
  106. Jankowski JA, Bruton R, Shepherd N et al. (1997) Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol Pathol 50:289–290PubMedCentralPubMedGoogle Scholar
  107. Jankowski JA, Wright NA, Meltzer SJ et al. (1999) Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol 154:965–973PubMedCentralPubMedGoogle Scholar
  108. Hang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB (1992) Amplification and expression of the human cyclin D gene in esophageal cancer. Cancer Res 52:2980–2983Google Scholar
  109. Jones PA, Laird PW (1999) Cancer epigenetics comes of age. Nat Genet 21:163–167PubMedGoogle Scholar
  110. Jones GJ, Heiss NS, Veale RB et al. (1993) Amplification and expression of the TGF-alpha, EGF receptor and c-myc genes in four human oesophageal squamous cell carcinoma lines. Biosci Rep 13:303–312PubMedGoogle Scholar
  111. Jones DR, Davidson AG, Summers CL et al. (1994) Potential application of p53 as an intermediate biomarker in Barrett’s esophagus. Ann Thorac Surg 57:598–603PubMedGoogle Scholar
  112. Kagawa Y, Yoshida K, Hirai T et al. (2000) Microsatellite instability in squamous cell carcinomas and dysplasias of the esophagus. Anticancer Res 20:213–217PubMedGoogle Scholar
  113. Kallioniemi A, Kallioniemi OP, Sudar D et al. (1992) Comparative genomie hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821PubMedGoogle Scholar
  114. Kamb A, Gruis NA, Weaver-Feldhaus J et al. (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440PubMedGoogle Scholar
  115. Kanda Y, Nishiyama Y, Shimada Y et al. (1994) Analysis of gene amplification and overexpression in human esophageal-carcinoma cell lines. Int J Cancer 58:291–297PubMedGoogle Scholar
  116. Kawakami K, Brabender J, Lord RV et al. (2000) Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 92:1805–1811PubMedGoogle Scholar
  117. Kelsen DP, Ginsberg R, Pajak TF et al. (1998) Chemotherapy followed by surgery compared with surgery alone for localized esophageal cancer. N Engl J Med 339:1979–1984PubMedGoogle Scholar
  118. King TC, Estalilla OC, Safran H (1999) Role of p53 and p16 gene alterations in determining response to concurrent paclitaxel and radiation in solid tumor. Semin Radiat Oncol [2 Suppl 1] 19:4–11Google Scholar
  119. Kirby TJ, Rice TW (1994) The epidemiology of esophageal cancer. Chest Surg Cancer 4:217–225Google Scholar
  120. Kiriu H, Yokozaki H, Yasui W et al. (1998) Microsatellite instability associated with primary head and neck cancers and secondary esophageal cancers. Jpn J Clin Oncol 28:733–739Google Scholar
  121. Kitadai Y, Haruma K, Tokutomi T et al. (1998) Significance of vessel count and vascular endothelial growth factor in human esophageal carcinomas. Clin Cancer Res 4:2195–2200PubMedGoogle Scholar
  122. Kitagawa Y, Ueda M, Ando N et al. (1996) Further evidence for prognostic significance of epidermal growth factor receptor gene amplification in patients with esophageal squamous cell carcinoma. Clin Cancer Res 2:909–914PubMedGoogle Scholar
  123. Klump B, Hsieh CJ, Holzmann K et al. (1998) Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. Gastroenterology 115:1381–1386PubMedGoogle Scholar
  124. Koch AE, Polverini PJ, Kunkel SL et al. (1992) Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258:1798–1801PubMedGoogle Scholar
  125. Koide N, Yamanda T, Iida F et al. (1997) Immunohistochemical studies of vascular volume and proliferative activity in squamous cell carcinoma of the esophagus. Surg Today 27:99–106PubMedGoogle Scholar
  126. Koide N, Nishio A, Kono T et al. (1999a) Histochemical study of vascular endothelial growth factor in squamous cell carcinoma of the esophagus. Hepatogastroenterology 46:952–958PubMedGoogle Scholar
  127. Koide N, Watanabe H, Yazawa K et al. (1999b) Immunohistochemical expression of thymidine phosphorylase/platelet-derived endothelial cell growth factor in squamous cell carcinoma of the esophagus. Hepatogastroenterology 46(26):944–951PubMedGoogle Scholar
  128. Kok TC, Gaast A van der, Splinter TA (1997) 13-cis-retinoic acid and alpha-interferon in advanced squamous cell cancer of the oesophagus. Eur J Cancer 33:165–166PubMedGoogle Scholar
  129. Kotoh T, Dhar DK, Masunaga R et al. (1999) Antiangiogenic therapy of human esophageal cancers with thalidomide in nude mice. Surgery 125:536–544PubMedGoogle Scholar
  130. Kuwano H, Sonoda K, Yasuda M et al. (1997) Tumor invasion and angiogenesis in early esophageal squamous cell carcinoma. J Surg Oncol 65:188–193PubMedGoogle Scholar
  131. Lagergren J, Bergstrom R, Lindgren A et al. (1999) Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 340:825–831PubMedGoogle Scholar
  132. Lam AK (2000) Molecular biology of esophageal squamous cell carcinoma. Crit Rev Oncol Hematol 33:71–90PubMedGoogle Scholar
  133. Lam KY, Loke SL, Chen WZ et al. (1995) Expression of p53 in oesophageal squamous cell carcinoma in Hong Kong Chinese. Eur J Surg Oncol 21:242–247PubMedGoogle Scholar
  134. Lam KY, Tsao SW, Zhang D et al. (1997) Prevalence and predictive value of p53 mutation in patients with oesophageal squamous cell carcinomas: a prospective clinico-pathological study and survival analysis of 70 patients.Int J Cancer 74:212–219PubMedGoogle Scholar
  135. Lam KY, Law S, Tin L et al. (1999) The clinicopathological significance of p21 and p53 expression in esophageal squamous cell carcinoma: an analysis of 153 patients. Am J Gastroenterol 94:2060–2068PubMedGoogle Scholar
  136. Lerut T, Coosemans W, Van Raemdonck D, Dillemans B, De Leyn P, Marnette JM, Geboes K (1994) Surgical treatment of Barrett’s carcinoma. Correlations between morphologic findings and prognosis. J Thorac Cardiovasc Surg 107:1059–1065PubMedGoogle Scholar
  137. Levine DS, Haggitt RC, Blount PL et al. (1993) An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett’s esophagus.Gastroenterology 105:40–50PubMedGoogle Scholar
  138. Li H, Walsh TN, Hennessy TP (1992) Carcinoma arising in Barrett’s esophagus. Surg Gynecol Obstet 175:167–172PubMedGoogle Scholar
  139. Liu Q, Neuhausen S, McClure M et al. (1995) CDKN2 (MTS1) tumor suppressor gene mutations in human tumor cell lines. Oncogene 11:2455PubMedGoogle Scholar
  140. Lord RV, Danenberg KD, Danenberg PV (1999) Cyclooxy-genase-2 in Barrett’s esophagus, Barrett’s adenocarcinomas, and esophageal SCC: ready for clinical trials. Am J Gastroenterol 94:2313–2315PubMedGoogle Scholar
  141. Lortat-Jacob JL (1957) L’endobrachy-oesophage. Ann Chir 11:1241Google Scholar
  142. Lu SH, Hsieh LL, Luo FC et al. (1988) Amplification of the EGF receptor and c-myc genes in human esophageal cancers.Int J Cancer 42:502–505PubMedGoogle Scholar
  143. Macleod D, Ali RR, Bird A (1998) An alternative promoter in the mouse major histocompatibility complex dass III-Abeta gene: implications for the origin of CpG islands.Mol Cell Biol 18:4433–4443PubMedCentralPubMedGoogle Scholar
  144. Maesawa C, Tamura G, Nishizuka S et al. (1996) Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma.Cancer Res56:3875–3878PubMedGoogle Scholar
  145. Maesawa C, Tamura G, Nishizuka S et al. (1997) MAD-related genes on 18q21.1, Smad2 and Smad4, are altered infrequently in esophageal squamous cell carcinoma. Jpn J Cancer Res 88:340–343PubMedGoogle Scholar
  146. Mafune K, Tanaka Y, Mimori K et al. (1999) Increased expression of ornithine decarboxylase messenger RNA in human esophageal carcinoma. Clin Cancer Res 5:4073–4078PubMedGoogle Scholar
  147. Mao EJ, Schwartz SM, Daling JR et al. (1998) Loss of heterozygosity at 5q21-22 (adenomatous polyposis coli gene region) in oral squamous cell carcinoma is common and correlated with advanced disease. J Oral Pathol Med27:297–302PubMedGoogle Scholar
  148. Meltzer SJ (1996) The molecular biology of esophageal carcinoma.Recent Results Cancer Res 142: 1–8PubMedGoogle Scholar
  149. Meltzer SJ, Yin J, Manin B et al. (1994) Microsatellite instability occurs frequently and in both diploid and aneuploid cell populations of Barrett’s-associated esophageal adenocarcinomas. Cancer Res 54:3379–3382PubMedGoogle Scholar
  150. Menke-Pluymers MB, Schoute NW, Mulder AH, Hop WC, van Blankenstein M, Tilanus HW (1992) Outcome of surgical treatment of adenocarcinoma in Barrett’s oesophagus. Gut 33:1454–1458PubMedCentralPubMedGoogle Scholar
  151. Metzger R, Danenberg K, Leichman CG et al. (1998a) High basal level gene expression of thymidine phosphorylase (platelet-derived endothelial cell growth factor) in colorectal tumors is associated with nonresponse to 5-fluorouracil. Clin Cancer Res 4:2371–2376PubMedGoogle Scholar
  152. Metzger R, Leichman CG, Danenberg KD et al. (1998b) ERCCI mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16:309–316PubMedGoogle Scholar
  153. Miros M, Kerlin P, Walker N (1991) Only patients with dysplasia progress to adenocarcinoma in Barrett’s oesophagus.Gut 32:1441–1446PubMedCentralPubMedGoogle Scholar
  154. Monnier P, Fontolliet C, Savary M et al. (1987) Barrett’s oesophagus or columnar epithelium of the lower oesophagus.Baillieres Clin Gastroenterol 1:769–789PubMedGoogle Scholar
  155. Montesano R, Hollstein M, Hainaut P (1996) Genetic alterations in esophageal cancer and their relevance to etiology and pathogenesis: a review. Int J Cancer 69:225–235PubMedGoogle Scholar
  156. Moon MR, Schulte WJ, Haasler GB, Condon RE (1992)Transhiatal and transthoracic esophagectomy for adenocarcinoma of the esophagus. Arch Surg 127:951–955PubMedGoogle Scholar
  157. Mori T, Miura K, Aoki T et al. (1994) Frequent somatic mutation of the MTS1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Cancer Res 54:3396–3397PubMedGoogle Scholar
  158. Morin PJ, Sparks AB, Korinek V et al. (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APe. Science 275:1787–1790PubMedGoogle Scholar
  159. Morson BC, Belcher JR (1957) Adenocarcinoma of the esophagus and ectopic gastric mucosa. Br J Cancer 6:127Google Scholar
  160. Moskaluk CA, Heitmiller R, Zahurak M et al. (1996) p53 and p21 (WAFlICIPI/SDIl) gene products in Barrett esophagus and adenocarcinoma of the esophagus and esophagogastric junction. Hum Pathol 27:1211–1220PubMedGoogle Scholar
  161. Moskaluk CA, Hu J, Perlman EJ (1998) Comparative genomic hybridization of esophageal and gastroesophageal adenocarcinomas shows consensus areas of DNA gain and loss. Genes Chromosomes Cancer 22:305–311PubMedGoogle Scholar
  162. Muller A, Nakagawa H, Rustgi AK (1997) Retinoic acid and N-(4-hydroxy-phenyl) retinamide suppress growth of esophageal squamous carcinoma cell lines. Cancer Lett 113:95–101PubMedGoogle Scholar
  163. Muro K, Ohtsu A, Boku N et al. (1996) Association of p53 protein expression with responses and survival of patients with locally advanced esophageal carcinoma treated with chemoradiotherapy. Jpn J Clin Oncol 26:65–69PubMedGoogle Scholar
  164. Muzeau F, Flejou JF, Belghiti J et al. (1997a) Infrequent microsatellite instability in oesophageal cancers. Br J Cancer75:1336–1339PubMedCentralPubMedGoogle Scholar
  165. Muzeau F, Flejou JF, Thomas G et al. (1997b) Loss of heterozygosity on chromosome 9 and p16 (MTSI, CDKN2) gene mutations in esophageal cancers. Int J Cancer 72:27–30PubMedGoogle Scholar
  166. Nagamatsu M, Mori M, Kuwano H et al. (1992) Serial histologic investigation of squamous epithelial dysplasia associated with carcinoma of the esophagus. Cancer 69:1094–1098PubMedGoogle Scholar
  167. Nakamura T, Nekarda H, Hölscher AH et al. (1994) Prognostic value of DNA ploidy and c-erbB-2 oncoprotein overexpression in adenocarcinoma of Barrett’s esophagus [published erratum appears in Cancer 1994 74:2396]. Cancer 73:1785–1794PubMedGoogle Scholar
  168. Nakashima H, Mori M, Mimori K et al. (1995) Microsatellite instability in Japanese esophageal carcinoma. Int J Cancer64:286–289PubMedGoogle Scholar
  169. Nakashima S, Natsugoe S, Matsumoto M et al. (2000) Expression of p53 and p21 is useful for the prediction of preoperative chemotherapeutie effects in esophageal carcinoma. Anticancer Res 20:1933–1937PubMedGoogle Scholar
  170. Neufeld G, Cohen T, Gengrinovitch S et al. (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22PubMedGoogle Scholar
  171. Nishimaki T, Hölscher AH, Schüler M et al. (1991) Histopathologic characteristics of early adenocarcinoma in Barrett’s esophagus. Cancer 68:1731–1736PubMedGoogle Scholar
  172. Ogasawara S, Maesawa C, Tamura G et al. (1995) Frequent microsatellite alterations on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res 55:891–894PubMedGoogle Scholar
  173. Ohashi K, Nemoto T, Eishi Y et al. (1997) Expression of the cyclin dependent kinase inhibitor p21 WAF1/CIP1 in oesophageal squamous cell carcinomas. Virchows Arch 430:389–395PubMedGoogle Scholar
  174. Okamura K, Morimoto A, Hamanaka R et al. (1992) A model system for tumor angiogenesis: involvement of transforming growth factor-alpha in tube formation of human microvascular endothelial cells induced by esophageal cancer cells. Biochem Biophys Res Commun 186:1471–1479PubMedGoogle Scholar
  175. Olofsson B, Jeltsch M, Eriksson U et al. (1999) Current biology of VEGF-B and VEGF-C. Curr Opin Biotechnol 10:528–535PubMedGoogle Scholar
  176. Orringer MB, Marshall B, Iannettoni MD (1999) Transhiatal esophagectomy: clinical experience and refinements. Ann Surg 230:392–400PubMedCentralPubMedGoogle Scholar
  177. Pack SD, Karkera JD, Zhuang Z et al. (1999) Molecular cytogenetic fingerprinting of esophageal squamous cell carcinoma by comparative genomic hybridization reveals a consistent pattern of chromosomal alterations. Genes Chromosomes Cancer 25:160–168PubMedGoogle Scholar
  178. Pera M, Cameron AJ, Trastek VF et al. (1993) Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. Gastroenterology 104:510–513PubMedGoogle Scholar
  179. Pera M, Brito MI, Riera E et al. (2000) Duodenal-content reflux esophagitis induces the development of glandular metaplasia and adenosquamous carcinoma in rats. Carcino genesis 21:1587–1591Google Scholar
  180. Plowman GD, Culouscou JM, Whitney GS et al. (1993) Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci USA 90:1746–1750PubMedCentralPubMedGoogle Scholar
  181. Powell J, McConkey CC (1990) Increasing incidence of adenocarcinoma of the gastric cardia and adjacent sites. Br J Cancer 62:440–443PubMedCentralPubMedGoogle Scholar
  182. Powell SM, Papadopoulos N, Kinzier KW et al. (1994) APC gene mutations in the mutation cluster region are rare in esophageal cancers. Gastroenterology 107:1759–1763PubMedGoogle Scholar
  183. Press MF, Hung G, Godolphin W et al. (1994) Sensitivity of HER-2/neu antibodies in archival tissue samples: potential source of error in immunohistochemical studies of oncogene expression. Cancer Res 54:2771–2777PubMedGoogle Scholar
  184. Ramel S, Reid BJ, Sanchez CA et al. (1992) Evaluation of p53 protein expression in Barrett’s esophagus by two-parameter flow cytometry. Gastroenterology 102:1220–1228PubMedGoogle Scholar
  185. Reid BJ, Haggitt RC, Rubin CE et al. (1988) Observer variation in the diagnosis of dysplasia in Barrett’s esophagus. Hum Pathol 19:166–178PubMedGoogle Scholar
  186. Reid BJ, Blount PL, Rubin CE et al. (1992) Flow-cytometric and histological progression to malignancy in Barrett’s esophagus: prospective endoscopic surveillance of a cohort.Gastroenterology 102:1212–1219PubMedGoogle Scholar
  187. Reid BJ, Levine DS, Longton G et al. (2000) Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low-and high-risk patient subsets. Am J Gastroenterol 95:1669–1676PubMedCentralPubMedGoogle Scholar
  188. Rice TW, Goldblum JR, Falk GW et al. (1994) p53 immunoreactivity in Barrett’s metaplasia, dysplasia,and carcinoma. J Thorac Cardiovasc Surg 108:1132–1137PubMedGoogle Scholar
  189. Robertson CS, Mayberry JF, Nicholson DA et al. (1988) Value of endoscopic surveillance in the detection of neoplastic change in Barrett’s oesophagus. Br J Surg 75:760–763PubMedGoogle Scholar
  190. Roder JD, Busch R., Stein HJ et al. (1994) Ratio of invaded to removed lymph nodes as apredictor of survival in squamous cell carcinoma of the oesophagus. Br J Surg 81:410–413PubMedGoogle Scholar
  191. Roncalli M, Bosari S, Marchetti A et al. (1998) Cell cyde-related gene abnormalities and product expression in esophageal carcinoma. Lab Invest 78:1049–1057PubMedGoogle Scholar
  192. Sarbia M, Bittinger F, Porschen R et al. (1996) Tumor vascularization and prognosis in squamous cell carcinomas of the esophagus. Anticancer Res 16:2117–2121PubMedGoogle Scholar
  193. Sarbia M, Stahl M, Fink U et al. (1998) Expression of apoptosis-regulating proteins and outcome of esophageal cancer patients treated by combined therapy modalities. Clin Cancer Res 4:2991–2997PubMedGoogle Scholar
  194. Schlemper RJ, Riddell RH, Kato Y et al. (2000) The Vienna classification of gastrointestinal epithelial neoplasia. Gut 47:251–255PubMedCentralPubMedGoogle Scholar
  195. Schneider PM, Casson AG, Levin B et al. (1996) Mutations of p53 in Barrett’s esophagus and Barrett’s cancer: a prospective study of ninety-eight cases. J Thorac Cardiovasc Surg 111:323–331PubMedGoogle Scholar
  196. Schneider PM, Metzger R, Collet PH et al. (1999a) Chirurgie des Barrett-ösophagus und Barrett-Karzinoms. Visceralchirurgie 34:79–86Google Scholar
  197. Schneider PM, Zirbes TK, Metzger R, Baldus SE, Dienes HP, Hölscher AH (1999b) Histomorphologisches Regressionsgrading und Apoptose-Index als objektive Response-Parameter beim neoadjuvant chemoTherapicrten Adenocarcinom des Magens und ösophagogastralen übergangs. Langenbecks Arch Chir Forumband: 17–23Google Scholar
  198. Schneider PM, Stoeltzing O, Roth JA et al. (2000) P53 mutational status improves estimation of prognosis in patients with curatively resected adenocarcinoma in Barrett’s esophagus. Clin Cancer Res 6:3153–3158PubMedGoogle Scholar
  199. Schnell TG, Sontag SJ, Chejfec G, Aranha G, Metz A, O’Connell S, Scidel UJ, Sonnenberg A (2001) Long-term nonsurgical management of Barrett’s esophagus with highgrade dysplasia. Gastroenterology 120:1607–1619PubMedGoogle Scholar
  200. Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-alpha: a more potent angiogenic mediator than epidermal growth factor. Science 232:1250–1253PubMedGoogle Scholar
  201. Schuler GD, Boguski MS, Stewart EA et al. (1996) A gene map of the human genome. Science 274:540–546PubMedGoogle Scholar
  202. Seta T, Imazeki F, Yokosuka O et al. (1998) Expression of p53 and p21 WAFlICIPI proteins in gastric and esophageal cancers: comparison with mutations of the p53 gene. Dig Dis Sci 43:279–289PubMedGoogle Scholar
  203. Sheyn I, Noffsinger AE, Heffelfinger S et al. (1997) Amplification and expression of the cydin D1 gene in anal and esophageal squamous cell carcinomas. Hum Pathol 28:270–276PubMedGoogle Scholar
  204. Shibagaki I, Tanaka H, Shimada Y et al. (1995) p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma. Clin Cancer Res 1:769–773PubMedGoogle Scholar
  205. Shih CH, Ozawa S, Ando N et al. (2000) Vascular endothelial growth factor expression predicts outcome and lymph node metastasis in squamous cell carcinoma of the esophagus. Clin Cancer Res 6:1161–1168PubMedGoogle Scholar
  206. Shimada H, Arima M, Nakajima K et al. (1998) Detection of serum p53 antibodies in mucosal esophageal cancer and negative conversion after treatment. Am J Gastroenterol 93:1388–1389PubMedGoogle Scholar
  207. Shimada Y, Imamura M, Watanabe G et al. (1999) Prognostic factors of oesophageal squamous cell carcinoma from the perspective of molecular biology. Br J Cancer 80: 1281–1288PubMedCentralPubMedGoogle Scholar
  208. Shimoyama S, Konishi T, Kawahara M et al. (1998) Expression and alteration of p53 and p21 (waf1/cip1) influence the sensitivity of chemoradiation therapy for esophageal cancer. Hepatogastroenterology 45:1497–1504PubMedGoogle Scholar
  209. Shinomiya T, Mori T, Ariyama Y et al. (1999) Comparative genomic hybridization of squamous cell carcinoma of the esophagus: the possible involvement of the DPI gene in the 13q34 amplicon. Genes Chromosomes Cancer 24:337–344PubMedGoogle Scholar
  210. Siewert JR, Bartels H, Bollschweiler E et al. (1992) Squamous cell cancer of the esophagus. Treatment concept at the surgical clinic of the Munich Technical University.Chirurg 63:693–700PubMedGoogle Scholar
  211. Siewert JR, Stein HJ, Feith M, Bruecher BL, Bartels H, Fink U (2001) Histologic tumor type is an independent prognostic parameter in esophageal cancer: lessons from more than 1000 consecutive resections at a single center in the Western world. Ann Surg 234:360–367; discussion 368-369PubMedCentralPubMedGoogle Scholar
  212. Singh SP, Lipman J, Goldman H et al. (1998) Loss or altered subcellular localization of p27 in Barrett’s associated adenocarcinoma.Cancer Res 58:1730–1735PubMedGoogle Scholar
  213. Spechler SJ, Goyal RK (1986) Barrett’s esophagus. N Engl J Med 315:362–371PubMedGoogle Scholar
  214. Spechler SJ, Zeroogian JM, Antonioli DA et al. (1994) Prevalence of metaplasia at the gastro-oesophageal junction. Lancet 344:1533–1536PubMedGoogle Scholar
  215. Stein HJ, Feith M, Mueller J et al. (2000) Limited resection for early adenocarcinoma in Barrett’s esophagus. Ann Surg 232:733–742PubMedCentralPubMedGoogle Scholar
  216. Stöltzing O, Schneider PM, Becker K, Wegerer S, Siewert JR, Rölscher AH (1998) Frequenz und Bedeutung von APC Genmutationen in der malignen Degeneration des Barrett-ösophagus. Langenbecks Arch Chir Forumband:485–489Google Scholar
  217. Streitz JM Jr, Ellis FR Jr, Gibb SP, Balogh K, Watkins E Jr (1991) Adenocarcinoma in Barrett’s esophagus. A clinicopathologic study of 65 cases. Ann Surg 213:122–125PubMedCentralPubMedGoogle Scholar
  218. Suzuki R, Zhou X, Yin J et al. (1995) Intragenic mutations of CDKN2B and CDKN2A in primary human esophageal cancers. Hum Mol Genet 4:1883–1887PubMedGoogle Scholar
  219. Tada K, Oka M, Tangoku A et al. (2000) Gains of 8q23-qter and 20q and loss of 11q22-qter in esophageal squamous cell carcinoma associated with lymph node metastasis. Cancer 88:268–273PubMedGoogle Scholar
  220. Takebayashi Y, Natugoe S, Baba M et al. (1998) Angiogenesis in esophageal squamous cell carcinoma. Oncol Rep 5:401–404PubMedGoogle Scholar
  221. Takeuchi H, Ozawa S, Ando N et al. (1997) Altered p16/MTS1/CDKN2 and cydin D1/PRAD-1 gene expression is associated with the prognosis of squamous cell carcinoma of the esophagus. Clin Cancer Res 3:2229–2236PubMedGoogle Scholar
  222. Tanaka H, Shimada Y, Imamura M et al. (1997) Multiple types of aberrations in the p16 (INK4a) and the p15 (INK4b) genes in 30 esophageal squamous-cell-carcinoma cell lines. Int J Cancer 70:437–442PubMedGoogle Scholar
  223. Tanaka H, Shimada Y, Harada H et al. (1998) Methylation of the 5’ CpG island of the FHIT gene is closely associated with transcriptional inactivation in esophageal squamous cell carcinomas. Cancer Res 58:3429–3434PubMedGoogle Scholar
  224. Tanigawa N, Matsumura M, Amaya H et al. (1997) Tumor vascularity correlates with the prognosis of patients with esophageal squamous cell carcinoma. Cancer 79:220–225PubMedGoogle Scholar
  225. Tarmin L, Yin J, Zhou X et al. (1994) Frequent loss of heterozygosity on chromosome 9 in adenocarcinoma and squamous cell carcinoma of the esophagus. Cancer Res54:6094–6096PubMedGoogle Scholar
  226. Toyota M, Issa JP (2000) The role of DNA hypermethylation in human neoplasia. Electrophoresis 21:329–333PubMedGoogle Scholar
  227. Tsuboi K, Hirayoshi K, Takeuchi K et al. (1987) Expression of the c-myc gene in human gastrointestinal malignancies. Biochem Biophys Res Commun 146:699–704PubMedGoogle Scholar
  228. Tytgat GN, Hameeteman W (1992) The neoplastic potential of columnar-lined (Barrett’s) esophagus. World J Surg 16:308–312PubMedGoogle Scholar
  229. Uchida S, Shimada Y, Watanabe G et al. (1998) In oesophageal squamous cell carcinoma vascular endothelial growth factor is associated with p53 mutation, advanced stage and poor prognosis. Br J Cancer 77:1704–1709PubMedCentralPubMedGoogle Scholar
  230. Vaezi MF, Falk GW, Peek RM et al. (2000) CagA-positive strains of Helicobacter pylori may protect against Barrett’s esophagus. Am J Gastroenterol 95:2206–2211PubMedGoogle Scholar
  231. Van Dekken H, Geelen E, Dinjens W.N. et al. (1999) Comparative genomic hybridization of cancer of the gastroesophageal junction: deletion of 14Q31-32.1 discriminates between esophageal (Barrett’s) and gastric cardia adenocarcinomas. Cancer Res 59:748–752PubMedGoogle Scholar
  232. Walch AK, Zitzelsberger HF, Bruch J et al. (2000) Chromosomal imbalances in Barrett’s adenocarcinoma and the metaplasia-dysplasia-carcinoma sequence. Am J Pathol 156:555–566PubMedCentralPubMedGoogle Scholar
  233. Walsh TN, Noonan N, Hollywood D et al. (1996) A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 335:462–467PubMedGoogle Scholar
  234. Wang QS, Sabourin CL, Bijur GN et al. (1996) Alterations in transforming growth factor-alpha and epidermal growth factor receptor expression during rat esophageal tumorigenesis. Mol Carcinog 15:144–153PubMedGoogle Scholar
  235. Wang LS, Wu LH, Chang CJ et al. (1998) Flow-cytometric DNA content analysis of oesophageal carcinoma. Comparison between tumour and sequential non-tumour mucosae. Scand Cardiovasc J 32:205–212PubMedGoogle Scholar
  236. Weidner N, Semple JP, Welch WR et al. (1991) Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324:1–8PubMedGoogle Scholar
  237. Weinberg RA (1994) Oncogenes and tumor suppressor genes. CA Cancer J Clin 44:160–170PubMedGoogle Scholar
  238. Westin T, Edstrom S, Lundholm K et al. (1991) Evaluation of ornithine decarboxylase activity as a marker for tumor growth rate in malignant tumors. Am J Surg 162:288–293PubMedGoogle Scholar
  239. Weston AP, Krmpotich PT, Cherian R et al. (1997) Prospective long-term endoscopic and histological follow-up of short segment Barrett’s esophagus: comparison with traditional long segment Barrett’s esophagus. Am J Gastroenterol 92:407–413PubMedGoogle Scholar
  240. Wilson KT, Fu S, Ramanujam KS et al. (1998) Increased expression of inducible nitric oxide synthase and cyclooxy-genase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 58:2929–2934PubMedGoogle Scholar
  241. Witzenbichler B, Maisonpierre PC, Jones P et al. (1998) Chemotactic properties of angiopoietin-1 and-2, ligands for the endothelial-specific receptors tyrosine kinase tie2. J Biol Chem 273:18514–18521PubMedGoogle Scholar
  242. Wong FH, Hu CP, Chiu JH et al. (1994) Expression of multiple oncogenes in human esophageal carcinomas. Cancer Invest 12:121–131PubMedGoogle Scholar
  243. Wong DJ, Barrett MT, Stoger R et al. (1997) p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res 57:2619–2622PubMedGoogle Scholar
  244. Xing EP, Nie Y, Wang LD et al. (1999) Aberrant methylation of p16INK4a and deletion of p15INK4b are frequent events in human esophageal cancer in Linxian, China. Carcinogenesis 20:77–84PubMedGoogle Scholar
  245. Yacoub L, Goldman H, Odze RD (1997) Transforming growth factor-alpha, epidermal growth factor receptor, and MiB-1 expression in Barrett’s-associated neoplasia: correlation with prognosis. Mod Pathol 10:105–112PubMedGoogle Scholar
  246. Yang G, Zhang Z, Liao J et al. (1997) Immunohistochemical studies on Waflp21, p16, pRb and p53 in human esophageal carcinomas and neighboring epithelia from a highrisk area in northern China. Int J Cancer 72:746–751PubMedGoogle Scholar
  247. Yano T, Tanase M, Watanabe A et al. (1995) Enhancement effect of an anti-angiogenic agent, TNP-470, on hyperthermia-induced growth suppression of human esophageal and gastric cancers transplantable to nude mice. Anticancer Res 15:1355–1358PubMedGoogle Scholar
  248. Yokota J, Yamamoto T, Toyoshima K et al. (1986) Amplification of c-erbB-2 oncogene in human adenocarcinomas in vivo. Lancet 1:765–767PubMedGoogle Scholar
  249. Yonekura H, Sakurai S, Liu X et al. (1999) Placenta growth factor and vascular endothelial growth factor Band C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J Biol Chem 274:35172–35178PubMedGoogle Scholar
  250. Yoshida M, Hayashi H, Taira M et al. (1992) Elevated expression of the ornithine decarboxylase gene in human esophageal cancer. Cancer Res 52:6671–6675PubMedGoogle Scholar
  251. Younes M, Lebovitz RM, Lechago L.V. et al. (1993) p53 protein accumulation in Barrett’s metaplasi, dysplasia, and carcinoma: a follow-up study. Gastroenterology 105:1637–1642PubMedGoogle Scholar
  252. Zhu D, Wang L, Zhang C et al. (1996) No evidence for the amplifications of MDM 2 and C-myc genes involved in the genetic susceptibility to esophageal cancer in a highrisk area of north China. Cancer Genet Cytogenet 89:184–185PubMedGoogle Scholar
  253. Zou TT, Lei J, Shi YQ et al. (1997) FHIT gene alterations in esophageal cancer and ulcerative colitis (UC). Oncogene 15:101–105PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Paul M. Schneider
  • Ralf Metzger
  • Stephan E. Baldus
  • Ute Warnecke-Eberz
  • Christiane J. Bruns
  • Jan Brabender
  • Oliver Stöltzing
  • Arnulf H. Hölscher

There are no affiliations available

Personalised recommendations