Advertisement

Atmosphere/Radiation/Aeronomy Missions

  • Herbert J. Kramer
Chapter

Abstract

An ESA Explorer mission, proposed in 1998, with the overall objective to obtain profiles of atmospheric parameters with occultation measurements using a constellation of six LEO microsatellites. The concept involves the systematic gathering of data over a five-year period. The profiles are used in such applications as climate modeling and climate prediction techniques to improve the understanding of the driving forces behind climate change and variability. The ACE science team is composed of researchers from the Meteorological Institutes in Denmark, Sweden, France and the United Kingdom. The ACE project is in phase A as of 2001.361) 362) 363) 364) 365)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 361).
    S. M. Veldman, K. Lundahl, “Atmospheric Climate Experiment ACE — a Constellation of Microsats for Atmospheric Sounding,” ISU International Symposium on Smaller Satellites: Bigger Business? May 21–23, 2001, Strasbourg, FranceGoogle Scholar
  2. 362).
    P. Hoeg, J. Guldberg, K. Lundahl, “Atmosphere Climate Experiment,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 343–346Google Scholar
  3. 363).
    K. Lundahl, S. Veldman, “Atmospheric Climate Experiment ACE,” Proceedings of the 51st International Astronautical Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-B.2.08Google Scholar
  4. 364).
    http://www.ssc.se/ssd/msat/ace/ace.html
  5. 365).
    S. Veldman, K. Lundahl, P. Hoeg, F. Hass, P. Sinander, “Atmospheric Climate Experiment ACE,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 95–98Google Scholar
  6. 366).
    Information provided by A. McLean of NASA/JPLGoogle Scholar
  7. 367).
    http://acrim.jpl.nasa.gov/mission/missionindex.html
  8. 368).
  9. 369).
    P. Ingmann, J. Fuchs, J. Pailleux, A. Stoffelen, “The Atmospheric Dynamics Mission,” ESA Earth Observation Quarterly, No 66, July 2000, pp. 12–17Google Scholar
  10. 370).
    “Atmospheric Dynamics Mission,” ESA publication SP-1233 (4), July 1999Google Scholar
  11. 371).
  12. 372).
    F. Fabre, A. Heliere, et al., “Direct Detection Doppler Wind Lidar Prototype: Design and Preliminary Results,” Proceedings of the 2000 EUMETSAT Meteorological Satellite Data Users’ Conference, Bologna, Italy, May 29–June 2, 2000, pp. 239–242Google Scholar
  13. 373).
    D. Morancais, F. Fabre, “Incoherent Doppler Wind Lidar ADM Concept and Related Prototype,” Proceedings of the EUMETSAT Meteorological Satellite Data User’s Conference, Copenhagen, Denmark, Sept. 6–10, 1999, pp. 85–92Google Scholar
  14. 374).
    http://nssdc.gsfc.nasa.gov/nmc/sc-query.html
  15. 375).
    E. W. Young, Jr., P. S. Caruso Jr., “Satellite temperature-flux monitor for low perigee applications,” ISA ASI 75225, 1975, pp. 133–143Google Scholar
  16. 376).
    P. S. Caruso Jr., C. R. Naegeli, “Low perigee aerodynamic heating during orbital flight of an Atmosphere Explorer,” NASA TM D-8308, Sept. 1976Google Scholar
  17. 377).
    M. P. McCormick, P. Hamill, T. J. Pepin, W. P. Chu, T. J. Swissler, L. R. McMaster, “Satellite Studies of the Stratospheric Aerosol,” Bulletin of the American Meteorological Society, Vol. 60,No. 9, September 1979, pp. 1038–1046CrossRefGoogle Scholar
  18. 378).
    L. R. McMaster, M. W. Rowland, “SAGE-I Data User’s Guide,” NASA Reference Publication 1275, Aug. 1992Google Scholar
  19. 379).
    Note: A photometer is usually a broadband instrument capable of measuring thermal continuum radiation (i.e. flux) thereby permitting the study of energy balance and surface composition (also detection of infrared roughness of surface features)Google Scholar
  20. 380).
    B. Bizzarri, P. Spera, E. Maggi, et al., “Instruments and system for CLOUDS — a Cloud and Radiation monitoring satellite,” the EOS/SPIE Symposium on Remote Sensing, Sept. 25–29, 2000, Barcelona, Spain, SPIE Vol. 4163–43Google Scholar
  21. 381).
    B. Bizzarri, M. Desbois, C. Stanfuss, J. Murray, J. Russell, C. Naud, A. Gasiewski, K. Künzi, et al., “Scientific background for CLOUDS — a Cloud and Radiation Monitoring Satellite”, the EOS/SPIE Symposium on Remote Sensing, Sept. 25–29, 2000, Barcelona, Spain, SPIE Vol. 4168–08Google Scholar
  22. 382).
  23. 383).
    F. K. Li, E. Im, S. L. Durden, R. Girard, G. Sadowy, C. Wu, “Cloud Profiling Radar (CPR) for the CloudSat Mission,” Proceedings of IEEE/IGARSS 2000, Honolulu, HI, July 24–28, 2000Google Scholar
  24. 384).
  25. 385).
    G. L. Stephens, D. G. Vane, S. J. Walter, “The CloudSat Mission: A new Dimension to space-based Observations of Cloud in the coming Millennium,” paper presented at the GCSS-WGNE Workshop, Fort Collins, CO, Nov. 9–13, 1998Google Scholar
  26. 386).
  27. 387).
    V. S. Dokukin, V. N. Oraevsky, et al., “The General Conception of the Microsatellite Compass to be launched from Submarine to the Study of Earthquake Forerunners,” Proceedings of the 2nd IAA Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 327–329Google Scholar
  28. 388).
    Information provided by Vladimir S. Dokukin of IZMIRAN, Troitsk, RussiaGoogle Scholar
  29. 389).
    V. N. Oraevsky, V. S. Dokukin, V. A. Alekseev, Yu. Ra. Ruzhin, V. G. Degtiar, V. A. Danilkin, “The General Conception of the Microsatellite COMPASS to the Study of Earthquake Forerunners,” presented at the 11th Meeting of the US/Russian Earth Sciences Joint Working Group, April 23–26, 2001, Washington, D.C., USAGoogle Scholar
  30. 390).
    http://www.spectrumastro.com/PDFs/Coriolis.PDF
  31. 391).
  32. 392).
    K. M. St. Germain and P. W. Gaiser, “Space borne Polarimetric radiometer and the WindSat Coriolis mission,”,Proceedings of the IEEE Aerospace Conference, IEEE Catalog No. 00TH8484C, March 2000.Google Scholar
  33. 393).
    http://www.sr.bham.ac.uk/instrument/smei.html
  34. 393).
    http://www.sr.bham.ac.uk/instrument/smei.html
  35. 395).
    http://www.vs.afrl.af.mil/factsheets/SMEI.html
  36. 396).
    B. V. Jackson, A. Buffington, P. Hick, S.W. Kahler, S. L. Keil, R. C. Altrock, G. M. Simnett, D. F. Webb, “The Solar Mass Ejection Imager,” Phys. Chem. Earth, 22, 441, 1997CrossRefGoogle Scholar
  37. 397).
    R. A. Cooper, D. H. Burks, “Space Physics Missions Handbook,” NASA, Office of Space Science and Applications, Feb. 1991Google Scholar
  38. 398).
    Special Section on CRRES, Journal of Spacecraft and Rockets, Vol. 29, No. 4 July-Aug. 1992, pp. 555–617Google Scholar
  39. 399).
    R. A. Hoffman, G. D. Hogan, R. C. Maehl, “Dynamics Explorer Spacecraft and Ground Operating Systems,” Space Science Instrumentation, 5, 1981, pp. 349–367Google Scholar
  40. 400).
    W. H. Farthing, L. J. Cahill, et al., “Magnetic Field Observations on DE-A and -B,” Space Science Instrumentation, 5, 1981, pp. 551–560Google Scholar
  41. 401).
    S. D. Shawhan, R. A. Helliwell, et al., “The Plasma Wave and Quasi-Static Electric Field Instrument (PWI) for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 535–550Google Scholar
  42. 402).
    J. L. Burch, R. A. Hoffman, et al., “High-Altitude Plasma Instrument for Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 455–463Google Scholar
  43. 403).
    C. R. Chappell, J. H. Hoffman, et al., “The Retarding Ion Mass Spectrometer on Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 477–491Google Scholar
  44. 404).
    E. G. Shelley, et al., “The Energetic Ion Composition Spectrometer (EICS) for the Dynamics Explorer-A,” Space Science Instrumentation, 5, 1981, pp. 443–454Google Scholar
  45. 405).
    L. A. Frank et al., “Global Auroral Instrumentation for the Dynamics Explorer Mission,” Space Science Instrumentation 5, 1981, pp. 369–393Google Scholar
  46. 406).
    N. C. Maynard et al., “Instrumentation for Vector Electric Field Measurements from DE-B,” Space Science Instrumentation, 5, 1981, pp. 523–534Google Scholar
  47. 407).
    G. R. Carignan, et al., “The Neutral Mass Spectrometer on Dynamics Explorer B,” Space Science Instrumentation, 5, 1981, pp. 429–441.Google Scholar
  48. 408).
    N. W. Spencer, et al., “The Dynamics Explorer Wind and Temperature Spectrometer,” Space Science Instrumentation, 5, 1981, pp. 417–428Google Scholar
  49. 409).
    P. B. Hays, et al., “The Fabry-Perot Interferometer on Dynamics Explorer,” Space Science Instrumentation, 5, 1981, pp. 395–416Google Scholar
  50. 410).
    R. A. Heelis, W. B. Hanson, et al., “The Ion Drift Meter for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 511–521Google Scholar
  51. 411).
    W. B. Hanson et al., “The Retarding Potential Analyzer for Dynamics Explorer-B,” Space Science Instrumentation, 5, 1981, pp. 503–510Google Scholar
  52. 412).
    J. P. Krehbiel, L. H. Brace, W. H. Pinkus, R. B. Kaplan, et. al., “The Dynamics Explorer Langmuir Probe Instrument,” Space Science Instrumentation, 5, 1981, pp. 493–502Google Scholar
  53. 413).
    J. D. Winningham, R. A. Hoffman, et al., “The Low Altitude Plasma Instrument (LAPI),” Space Science Instrumentation, 5, 1981, pp. 465–475Google Scholar
  54. 414).
    J. A. Dezio, G. A. Jensen, “Earth Radiation Budget Satellite,” in Monitoring Earth’s Ocean, Land, and Atmosphere, Vol. 97 by AIAA, 1985, pp. 261–292Google Scholar
  55. 415).
    Information provided by Jack Paden and Bob Lee of NASA/LaRCGoogle Scholar
  56. 416).
    URL: http://eosweb.larc.nasa.gov/HBDOCS/sensor_info.html
  57. 417).
    B. R. Barkstrom and J. B. Hall, Jr., “Earth Radiation Budget Experiment (ERBE): An Overview”, J. Energy, Vol. 6, 1982, pp. 141–146CrossRefGoogle Scholar
  58. 418).
    D. M. Winker, B. A Wielicki, “The PICASSO-CENA Mission,” Part of the EUROPTO Conference on Sensors, Systems and Next Generation Satellites, Proceedings of SPIE, Vol. 3870, Florence, Italy, Sept. 20–24, 1999, pp. 26–36Google Scholar
  59. 419).
    J. Blouvac, B. Lazaed, J. M. Martinuzzi, “ CNES Small Satellites Earth Observation Scientific Future Missions”, IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 11–14Google Scholar
  60. 420).
    J. Reagan, D. Winker, “PICASSO-CENA: Combined Active-Passive Sensing from Space,” Proceedings of IGARSS’99, Vol. 1, pp. 240–242Google Scholar
  61. 421).
    D. M. Winker, “Global Observations of Aerosols and Clouds from combined Lidar and passive Instruments to improve Radiation Budget and Climate Studies,” The Earth Observer, Vol. 11, No 3, May/June 1999, pp. 22–25Google Scholar
  62. 422).
  63. 423).
    D. Q. Robinson, “PICASSO-CENA Satellite-Based Research Mission: K-12 Education and Public Outreach (Student use of remote sensing for research validation),” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000Google Scholar
  64. 424).
    H. Carvalho, “The French Brazilian Microsatellite,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAA-00-IAA.11.1.04Google Scholar
  65. 425).
    M. N. Barbosa, S. Plattard, “New opportunities for international cooperation — FBM, a French-Brazilian microsatellite to study the sun,” CNES Magazine No 9, June 2000, pp. 33–34Google Scholar
  66. 426).
    Information provided by Himilcon Carvalho of INPEGoogle Scholar
  67. 427).
    Information provided by Christophe Bastien-Thiry of CNESGoogle Scholar
  68. 428).
    C. I. Grastataro, T. A. Butler, et al., “Development of a Composite Satellite Structure for FORTE,”. Proceedings of The Tenth International Conference on Composite Materials, Whistler, British Columbia, Canada, 1995,. LA-UR-95–1016Google Scholar
  69. 429).
    T. C. Thompson, C. I. Grastataro, et al., “Development of an All-Composite Spacecraft Bus for Small Satellite Programs,”. Proceedings of The Eighth Annual AIAA/USU Conference on Small Satellites, Logan, UT, 1994Google Scholar
  70. 430).
    K. K. Ruud et al., “FORTE Hardware-in-Loop Simulation,” Proceedings of AIAA/USU Conference on Small Satellites, 1997, pp. 1–9Google Scholar
  71. 431).
    http://nis-www.lanl.gov/nis-projects/forte_science/
  72. 432).
    K. R. Moore, P.C. Blain, et al., “Classification of rf transients in space using digital signal processing and neural network techniques,”. Applications and Science of Neural Networks, Proceedings SPIE, Vol. 2492, pp. 995–1006, 1995Google Scholar
  73. 433).
    S. Briles, K. Moore, et al., “Innovative Use of DSP Technology in Space: FORTE Event Classifier,”. 1998Google Scholar
  74. 434).
    K. R. Moore, J. F. Wilkerson, et al., “A Space-based Classification System for RF Transients”. Proceedings of the International Workshop on Artificial Intelligence in Solar-Terrestrial Physics, Lund, Sweden, p. 205, 1993Google Scholar
  75. 435).
    A. R. Jacobson, S. O. Knox, et al., “FORTE observations of lightning radio-frequency signatures: Capabilities and basic results,” Radio Science, Vol. 34, 1999, pp. 337–354CrossRefGoogle Scholar
  76. 436).
    D. M. Suszcynsky, T. E. Light S. Davis, J. L. Green, et al., “Coordinated Observations of Optical Lightning from Space Using the FORTE Photodiode Detector and Imager,” Reg. LA-UR-00–341Google Scholar
  77. 437).
    M. W. Kirkland, et al., “Observations of terrestrial lightning at optical wavelengths by the photodiode detector on the FORTE satellite,” Rep. LA-UR-98–4098, LANL, 1998Google Scholar
  78. 438).
    S. Sobue, N. Tomii, T. Moriyama, et al., “NASDA’s Future Earth Observation Satellite Plan,” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000Google Scholar
  79. 439).
  80. 440).
    M. Suzuki, K. Shibasaki, H. Shimoda, T. Ogawa, “ Overview of GCOM-A1 Satellite Program,” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000Google Scholar
  81. 441).
    K. Shibasaki, M. Suzuki, Y. Yamamoto, “Ozone Dynamics Ultraviolet Spectrometer (ODUS) on Board GCOM-A1,” Proceedings of the IEEE/IGARSS 2000 Conference, Honolulu, HI, July 24–28, 2000Google Scholar
  82. 442).
    A. Kuze, H. Nakajima, J. Tanii, Y. Sasano, “Conceptual Design of Solar Occultation FTS for Inclined-orbit Satellite (SOFIS) on GCOM-A1,” Proceedings of SPIE 45th Conference, San Diego, Jul. 30 to Aug. 4, 2000, Vol. 4131–30 (Remote Sensing and Infrared Systems), 2000Google Scholar
  83. 443).
    G. G. Shepherd, I. C. McDade, W. A. Gault, Y. I. Rochon, A. Scott, et al., “The Stratospheric Wind Interferometer for Transport Studies (SWIFT),” 33rd COSPAR Scientific Assembly, Warsaw, Poland, July 16–23, 2000Google Scholar
  84. 444).
    P. Slater, ‘Remote Sensing’ Optics and Optical Systems, Addison-Wesley, 1980, pp. 462–465Google Scholar
  85. 445).
    445) HCMM System in ‘Manual of Remote Sensing,’ Second Edition, American Society of Photogrammetry, 1983, pp. 663–670Google Scholar
  86. 446).
    Megha means “cloud” in Sanskrit; Tropiques is the French word for “tropics.”Google Scholar
  87. 447).
    J. Blouvac, B. Lazaed, J. M. Martinuzzi, “ CNES Small Satellites Earth Observation Scientific Future Missions”, IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 11–14Google Scholar
  88. 448).
    J. P. Aguttes. J. Schrive, C. Goldstein, G. Raju, M. S. Narayanan, M. Desbois, “Megha-Tropiques, A Satellite for Studying the Water Cycle and Energy Exchanges in the Tropiques,” IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6,-2000Google Scholar
  89. 449).
    J. P. Aguttes, J. Schrive, Ch. Goldstein, M. Rouzé, G. Raju, “MEGHA-TROPIQUES, a satellite for studying the water cycle and energy exchanges in the tropics,” IEEE/IGARSS Conference 2000, Honolulu, HI, July 24–28, 2000Google Scholar
  90. 450).
    Illustration courtesy of Nadia Karouche of CNESGoogle Scholar
  91. 451).
  92. 452).
    J. L. Monge, R. Kandel, L. A. Pakhomov, B. Bauche, “ScaRaB Earth radiation budget scanning radiometer,” SPIE, Vol. 1490, ‘Future European and Japanese Remote Sensing Programs,’ 1991Google Scholar
  93. 453).
    J. Mueller, et al., “Ground Characterization of the Scanner for Radiation Budget (ScaRaB) Flight Model 1,” Journal of Atmospheric and Oceanic Technology, Vol. 14, No 4, pp.802–813, 1997.CrossRefGoogle Scholar
  94. 454).
    F. v. Scheele, “Star Formation and Ozone Depletion: The Swedish ODIN Satellite to Eye Heaven and Earth,” Nordic Space Activities, No. 5, 1994, pp. 44–46Google Scholar
  95. 455).
    “ODIN — A Small Satellite for Astronomy and Atmospheric Research,” SSC/SNSB brochureGoogle Scholar
  96. 456).
  97. 457).
    G. D. Warshaw, D. Desaulniers, D. Degenstein, “Optical Design and Performance of the ODIN UV/Visible Spectrograph and Infrared Imager Instrument,” Proceedings of the 10th Annual AIAA/Utah State University Conference on Small Satellites, Sept. 16–19, 1996Google Scholar
  98. 458).
    B. D. Boller, et al., “The Development of the Sea Winds Scatterometer Electronics Subsystem (SES),” Proceedings of IGARSS’96, Vol. 1, pp. 269–272Google Scholar
  99. 459).
    http://winds.jpl.nasa.gov/missions/quikscat/quikindex.html
  100. 460).
    D. Freesland,et al., “GPS Based Attitude Determination, The REX II Flight Experience,” Proceedings of the 10th Annual AIAA/Utah State University Conference on Small Satellites, Sept. 16–19, 1996Google Scholar
  101. 461).
    E. G. Lightsey, E. Ketchum, T. W. Flatley, J. L. Crassidis, et al., “Flight Results of GPS Based Attitude Control on the REX-II Spacecraft,” Proceedings of ION GPS-96, Sept. 17–20, 1996, Kansas City, MO, pp. 1037–1046Google Scholar
  102. 462).
    L.C. Lee, C. Rocken, “Applications of Constellation Observing System for Meteorology, Ionosphere & Climate”, R. Kursinski (Ed.), Springer, 2000, ISBN 962–430–135–2Google Scholar
  103. 463).
    C. Rocken, Y. H. Kuo, W. S. Schreiner, D. Hunt, S. Sokolovskiy, C. McCormick, “COSMIC System Description,” Special issue of TAO (Terrestrial, Atmospheric and Oceanic Science), Vol. 11, No. 1, March 2000, pp.21–52Google Scholar
  104. 464).
    G. A. Hajj, L. C. Lee, X. Pi, L. J. Romans, et al., COSMIC GPS Ionospheric Sensing and Space Weather,” Special issue of TAO (Terrestrial, Atmospheric and Oceanic Science), Vol. 11, No. 1, March 2000, pp.235–272Google Scholar
  105. 465).
    Y. K. Kuo, L. C. Lee, “A Constellation of Microsatellites Promises to Help in a Range of Geoscience Research,” EOS Transcriptions, AGU, Vol. 80, No. 40, Oct. 5, 1999, pp. 467–471CrossRefGoogle Scholar
  106. 466).
  107. 467).
    Information provided by Paul Chen of NSPOGoogle Scholar
  108. 468).
    The GPS radio occultation technique is based on the following principles: As a signal travels through the atmosphere it is retarded and bent. This results in a phase and Doppler shift, which can be measured very accurately by the GPS receiver aboard the LEO ROCSat-3/COSMIC satellites. Since the transmitter and receiver positions and velocities are accurately know from precise orbit determination, the signal bending angle alpha as a function of impact parameter, can be computed from the Doppler shift observed at LEO. From the basic bending angle versus impact parameter data, vertical profiles of refractivity as a function of tangent point radius can be derived. Further analysis converts refractivity to electron density in the ionosphere.Google Scholar
  109. 469).
    Payload Definition Document for SAN MARCO D/L Satellite, CRA, Oct. 1987Google Scholar
  110. 470).
    G. Schmidtke, H. Doll, C. Wita, and S. Chakrabarti, “Solar EUV/UV and equatorial airglow measurements from San Marco-5,” Journal of Atmospheric and Terrestrial Physics, Vol. 53, No. 8, pp. 781–785, 1991CrossRefGoogle Scholar
  111. 471).
    Jane’s Spaceflight Directory 1988–89, pp. 35–36Google Scholar
  112. 472).
    H. Dahl, W. Eliuk, G. Rumbold, R. Shelly, “ACE — A Canadian Small Satellite Mission,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-V-7Google Scholar
  113. 473).
  114. 474).
    I. Walkty, J. Petersen. T. Doherty, B. Whitehead, “SCISAT-1 ACE Mission C&DH Unit Development,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSCOO-I-5Google Scholar
  115. 475).
    P. Bernath, “Atmospheric Chemistry Experiment (ACE): An Overview,” Spectroscopy from Space, J.Demaison, editor, Klüver, 2001Google Scholar
  116. 476).
  117. 477).
    William McClintock, “2nd Science Team Meeting for the Solar Radiation and Climate Experiment — SORCE,” The Earth Observer, Nov./Dec. 2000, Vol. 12, No 6, pp.22–27Google Scholar
  118. 478).
    G. Rottman, G. Mount, G. Lawrence, T. Woods, J. Harder, S. Tournois, “Solar spectral Irradiance measurements: visible to near-infrared regions,” Metrologica, Vol 35, 1998, pp. 707–712CrossRefGoogle Scholar
  119. 479).
    Information provided by G. E. Cameron and by K. J. Heffernan of JHU/APLGoogle Scholar
  120. 480).
  121. 481).
    D. Y. Kusnierkiewicz, “A description of the TIMED spacecraft,” American Institute of Physics (AIP) Conference Proceedings, 387, Part One, pp. 115–121, 1997Google Scholar
  122. 482).
    R. S. Bokulic, et al., “A Highly Integrated S-Band Transceiver System with Two-Way Doppler Tracking Capability,” Proceedings of AIAA/USU Conference on Small Satellites, 1997, pp. 1–8Google Scholar
  123. 483).
    A. A. Chacos, P. A. Stadter, W. S. Devereux, “Autonomous Navigation and Crosslink Communication Systems for Space Applications,” JHU/APL Technical Digest, Vol. 22, No 2, 2001, pp. 135–143Google Scholar
  124. 484).
    Ch. C. DeBoy, M. J. Reinhart, “A Flexible, Transceiver-based RF Communications System for Small Satellites,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2002, pp. 363–366Google Scholar
  125. 485).
    http://lasp.colorado.edu/see/see_instrument.html
  126. 486).
  127. 487).
    F. P. J. Valero, J. Herman, P. Minnis, W. D. Collins, R. Sadourny, W. Wiscombe, D. Lubin, K. Ogilie, “Triana — a Deep Space Earth and Solar Observatory,” Report prepared for the National Academy of Sciences by the Triana Science Team (SIO, NASA/GSFC, NIST, LaRC, ARC, NCAR, LMD, LM, LANL, VT).Google Scholar
  128. 488).
    J. G. Watzin, “The Triana Mission — A Pathfinder Mission to Explore the Utility of using Deep Space in Conducting Earth Observation,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000Google Scholar
  129. 489).
    S. A. W. Gerstl, F. P. J. Valero, “The Triana Satellite Mission from L1 for Global Vegetation Monitoring,” Proceedings of IEEE/IGARSS’99, Vol. I, Hamburg, June 28–July 2, 1999Google Scholar
  130. 490).
  131. 491).
    http://www.earth.nasa.gov/ebn/triana/index.html
  132. 492).
    J. P. Rice, S. R. Lorentz, T. M. Jung, “The next generation of active cavity radiometers for space-based remote sensing,” 10th Conference on Atmospheric Radiation, Madison, WI, 1999, American Meteorological SocietyGoogle Scholar
  133. 493).
    “The Early Observing System Reference Handbook, ESAD Missions 1990–1997,” NASA/GSFC, pp. 62–64Google Scholar
  134. 494).
    T. Keating, T. Ryan, “Tropical Rainfall Measuring Mission (TRMM): US/Japan Science Operations,” AIAA-92–0594Google Scholar
  135. 495).
    T. Kozu, M. Kojima, K. Oikawa, K. Okamoto, T. Ihara, T. Manabe, “Development Status of Rain Radar for Tropical Rainfall Measuring Mission,” IEEE IGARSS ’92, Volume II, pp. 1722–1724Google Scholar
  136. 496).
    NASA paper provided by ESAD and OSSA.Google Scholar
  137. 497).
    T. Kozu, et al., “TRMM Precipitation Radar: Calibration and Data Collection Strategies,” Proceedings of IGARSS ’94, Volume IV, pp. 2215–2217Google Scholar
  138. 498).
    Courtesy of K. Maeda, NASDAGoogle Scholar
  139. 499).
    EOS Reference Handbook, NASA/GSFC, 1993Google Scholar
  140. 500).
    Z. Kawasaki, S. Yoshihashi, “TRMM/LIS observations of Lightning Activity,” Proceedings of the 11th International Conference on Atmospheric Electricity (ICAE), June 7–11, 1999, NASA/CP-1999–209261, pp. 176–179Google Scholar
  141. 501).
  142. 502).
    “UARS Seen as Earth Observing System’s Dress Rehearsal,” Space News September 9–15, 1991, p. 24Google Scholar
  143. 503).
    Portion of a UARS publication put out by NASA (provided by B. Needham of NOAA)Google Scholar
  144. 504).
    “Upper Atmosphere Research Satellite,” Summaries of papers presented at the Optical Remote Sensing of the Atmosphere Topical Meeting, Feb. 12–15, 1990, Optical Society of America, Volume 4, pp. 1–22Google Scholar
  145. 505).
    “Wind Imaging Interferometer (WINDII) for the UARS Mission,” Optical Remote Sensing of the Atmosphere, 1990 Technical Digest Series of the Optical Society of America, Volume 4, pp. PD3–1 to 4Google Scholar
  146. 506).
    W. A. Gault, W. E. Ward, et al., “Optical Doppler Imaging of Atmospheric Winds,” Proceedings of IGARSS’99, Vol. III, Hamburg, Germany, June 28 — July 2, 1999, pp. 1612–1615Google Scholar
  147. 507).
    W. A. Gault, W. E. Ward, et al.“Windii To Read Upper Atmosphere In Depth,” Space News September 16–22, 1991, p. 8Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations