Advertisement

University/Student-Developed Satellites & Payloads

  • Herbert J. Kramer
Chapter

Abstract

During the 1990s, satellite and payload development projects have become the program of choice for challenging (multi-year) training courses in quite a few engineering departments at universities throughout the world. The intent is always to enrich the student training program, to stimulate interest in a problem-solving multi-disciplinary technical environment, to be imaginative and resourceful, and to take some risks — with ample and essential help from mentors and partners (industry, institutional, or otherwise). Cooperation on many levels and active participation/publication within the international space science community are important ingredients in the overall objectives of research and development. In some instances, project-sharing among engineering departments of several universities is being practiced in order to handle the demanding and complex project goals in a certain time frame. In general, a good amount of enthusiasm and lots of volunteer work by all parties involved are needed to bring such low-cost program activities to maturity — an invaluable amount of professionalism is gained for all students in such programs. Some of the student-involved projects are presented here.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1805).
    A. Friedman, B. Underhill, et al., “ASUSat-1: Low-Cost Student-Designed Nanosatellite,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-V-2Google Scholar
  2. 1806).
    J.D. Rademacher, H. L. Reed, J. Puig-Suari, “ASUSat 1: An Example of Low-Cost Nanosatellite Development,” Acta Astronautica, Volume 39, Number 1.–4, pp. 189 – 196, 1996CrossRefGoogle Scholar
  3. 1807).
    S. Ferring, D. Waller, J. D. Rademacher, A. Friedman, H. L. Reed, “ASUSat-1: The Development of a Low-Cost Nano-Satellite,” Proceedings of the 11th AIAA/USU Conference on Small Satellites, Sept. 15–18, 1997Google Scholar
  4. 1808).
  5. 1809).
    H. J. Königsmann, H. Oelze, H. J. Rath, “BREMSAT — First flight Results,” Proceedings of the 8th AIAA/USU conference on small satellites, USU, Logan UT, 1994Google Scholar
  6. 1810).
    Abschlußbericht BREM-SAT 1, University of Bremen/ ZARM, April 29, 1996Google Scholar
  7. 1811).
    M. Wiegand, H. J. Königsmann, “A Small Re-entry Capsule — Bremsat-2,” Proceedings of the 10th AIAA/USU conference on small satellites, USU, Logan UT, 1996Google Scholar
  8. 1812).
    H. J. Königsmann, J. R. Wertz, S. D. Dawson, “BREM-SAT: A Reducing Space Mission Cost Case Study,” Microcosm Directory of Space Technology Data Sources, 1997, Section L, pp. L-1 to L-21Google Scholar
  9. 1813).
    R. Münzenmayer, H. Iglseder, H. Swedhem, “The Munich Dust Counter — An Experiment for the Measurement of Micro-meteoroids and Space debris,” Proceedings of the First European Conference on Space Debris at ESA/ ESOC Darmstadt, Germany, April 5–7, 1993Google Scholar
  10. 1814).
    H. P. Willemsen, M. v. Eesbeek, “OXFLUX, Atomic Oxygen Sensor on BREM-SAT 1,” Executive summary of the Final Report of Contract ESA No 9037/90/NL/JGGoogle Scholar
  11. 1815).
    Note: QCM measurements are based on the principle that the resonance frequency of a crystal controlled oscillator varies inversely proportional to the mass change of the crystal. Hence, a QCM may be used to measure the erosion of a pre-deposited coating under exposure to an atomic oxygen environment.Google Scholar
  12. 1816).
    W. Marchant, E. Riddle Taylor, “Status of CHIPS: A NASA University Explorer Astronomy Mission,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-V-6Google Scholar
  13. 1817).
  14. 1818).
    Courtesy of Will Marchant of UCB/SSLGoogle Scholar
  15. 1819).
  16. 1820).
    E. Hansen, “Advancing Radio Communications technology with the Citizen Explorer Mission,” Presented at the AMSAT Conference, New Orleans, Oct. 1998Google Scholar
  17. 1821).
  18. 1822).
    R. Chari, “Pre-Flight Characteristics of the US Air Force Academy’s FalconSat-1,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-VII-8Google Scholar
  19. 1823).
    http://www.usafa.af.mil/dfas/Research/FalconSat1/falconsat1.htm
  20. 1824).
    A. Martinez, I. Arruego, M. T. Alvarez, J. Barbero, et al., “Nanosatellites Technology Demonstration,” Proceedings of the 14th Annual AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-II-2Google Scholar
  21. 1825).
    J. L. Smith, D. Richards, M. Wood, G. Sharp, W. Clapp., “The JAWSAT Mission: Final Report and Lessons Learned,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-V-4Google Scholar
  22. 1826).
    http://cast.weber.edu/jawsat/jawsat.html
  23. 1827).
  24. 1828).
    S. Schoneman, S. J. Buckley, G. Stoller, L. M. Marina, C. B. Morris, “Demonstration of a New Smallsat Launch Vehicle: The Orbital/Suborbital Program (OSP) Space Launch Vehicle Inaugural Mission Results,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSC00-I-1Google Scholar
  25. 1829).
    http://www.lgarde.com/programs/ocse.html
  26. 1830).
    The name NayGold is derived from Navigation, emphasizing the relative navigation focus of the project, and Gold, one of the colors of the University of Colorado at Colorado Springs.Google Scholar
  27. 1831).
    D. Sipple, J. Torley, F. Chavez, et al., “NavGold — An On-Orbit Test Bed for Experiments in Formation Flight,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-II-5Google Scholar
  28. 1832).
    http://mae.uccs.edu/fdcl/navgold/home.html
  29. 1833).
    F. Chavez, D. K. Schmidt, “Formation Flying and Relation Navigation — A Nanosatellite Research Mission,” Proceedings of the 23rd Annual AAS Guidance and Control Conference, Feb. 2–6, 2000, Breckenridge, CO, AAS 00–061Google Scholar
  30. 1834).
    M. Ovchinnikov, V. Pen’kov, O. Norberg, S. Barabash, “Attitude Control System for the First Swedish Nanosatel-lite Munin,” Acta Astronautica, Vol. 46, No 2–6, 2000, pp. 319–326CrossRefGoogle Scholar
  31. 1835).
    http://munin.irf.se/frames/technology_index.html
  32. 1836).
    O. Norberg, W. Puccio, J. Olsen, et al., “Munin: A Student Nanosatellite for Space Weather Information,” Proceedings of the COSPAR Colloquium on Scientific Microsatellites, “Microsatellites as Research Tools,” Tainan, Taiwan, 1997Google Scholar
  33. 1837).
    J. L. Smith, et al, “Low-Cost Attitude Determination and Control for Small Satellites,” Proceedings of the 10th Annual AIAA/USU Conference on Small Satellites, pp. 1–20, Sept. 16–19, 1996Google Scholar
  34. 1838).
    http://cast.weber.edu/nusat/index.html
  35. 1839).
    J. Cutler, G. Hutchins, R. Twiggs, “OPAL: Smaller, Simpler, and Just Plain Luckier,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan UT, Aug. 21–24, 2000, SSC-VII-4Google Scholar
  36. 1840).
    D. S. Clarke, M. T. Hicks, et al., “Picosat Free Flying Magnetometer Experiment,” Proceedings of the 10th Annual AIAA/USU Conference on Small Satellites, Sept. 16–19, 1996Google Scholar
  37. 1841).
    http://ssdl.stanford.edu/opal/ihdex.html
  38. 1842).
    J. Cutler, G. Hutchins, C. Kitts, R. Twiggs, “Infrastructure for Internet-Based Operations,” Proceedings of the 14th AIAA/USU Conference on Small Satellites, Logan, UT, Aug. 21–24, 2000, SSCOO-IX-4Google Scholar
  39. 1843).
    Note: The three picosats are the main payload of OPAL, a technology demonstration project funded for JPL. The ultimate goal of this project is to be able to launch hundreds of picosatellites from a mothercraft in low Earth orbit — to obtain simultaneous measurements of the magnetic field over a large volume. Each picosat could measure the magnetic field and then transmit the data back to the mothercraft.Google Scholar
  40. 1844).
  41. 1845).
    Information provided by Ernest Y. Robinson and by David A. Hinkley of the Aerospace Corporation.Google Scholar
  42. 1846).
    M. F. Breiling, C. Y. Hu, et al, “The ARTEMIS Project: Picosatellite-Based Missions to Study VLF Phenomenon,” Proceedings of the 13th AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-VIII-3Google Scholar
  43. 1847).
  44. 1848).
    A. Valdez, Ci Hu, C. Kitts, et al., “The Artemis Project: Picosatellites and the Feasibility of Smaller, Faster, Cheaper Approach,” Proceedings of the IEEE Aerospace Conference, Snowmass, Co, March 6–13, 1999Google Scholar
  45. 1849).
    http://www.sp.nps.navy.mil/pansat/pansat.html
  46. 1850).
    Note: The solar pressure creates a minute, however constant torque, resulting from black and white painted antennasGoogle Scholar
  47. 1851).
    http://aa.Stanford.EDU:80/~ssdl/Google Scholar
  48. 1852).
    R. Twiggs, M. Swartwout, “SAPPHIRE — Stanford’s First Amateur Satellite,” AMSAT-NA 16th Space Symposium, Vicksburg, MS, Oct. 16, 1998Google Scholar
  49. 1853).
    http://www.ee.surrey.ac.uk/SSC/SSHP/nano/nano1997.html
  50. 1854).
    http://www.oceanes.fr/~fr5fc/angspoutnik.html
  51. 1855).
    B. Braun, C. Butkiewicz, J. Vasquez, G. Moore, “The Starshine Satellite From Concept to Delivery in Four Months,” Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan UT, SSC99-I-7Google Scholar
  52. 1856).
    http://www.azinet.com/starshine/index.html
  53. 1857).
    Information provided by Gil Moore, Director of the STARSHINE projectGoogle Scholar
  54. 1858).
    S. C. Solomon, S. M. Bailey, Ch. A. Barth, et al., “The SNOE Spacecraft: Integration, Test, Launch, Operation, and On-orbit Performance,” Proceedings of the 12th AIAÀ/USU Conference on Small Satellites, Logan, UT, 1998Google Scholar
  55. 1859).
    Information provided by S. C. Solomon, University of Colorado at BoulderGoogle Scholar
  56. 1860).
    S. C. Solomoh, et al, “The Student Nitric Oxide Explorer,” Proceedings of the 9th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah, 1995Google Scholar
  57. 1861).
    S. M. Bailey, et al., “Science Instrumentation for the Student Nitric Oxide Explorer,” Proceedings of the 9th Annual AIAA/USU Conference on Small Satellites, Utah State University, Logan, Utah, 1995Google Scholar
  58. 1862).
    http://lasp.cojorado.edu/snoe/overview.html
  59. 1863).
    S. C. Solomon, Ch. Barth, S. M. Bailey, “Auroral production of nitric oxide measured by the SNOE satellite,” Geophysical Research Letters, Vol. 26, No 9, May 1, 1999, pp. 1259–1262CrossRefGoogle Scholar
  60. 1864).
    S. M. Bailey, T. N. Woods, Ch. A. Barth, S. C. Solomon, “Measurements of the solar soft x-ray irradiance from the Student Nitric Oxide Explorer,” Geophysical Research Letters, Vol. 26, No 9, May 1, 1999, pp. 1255–1258CrossRefGoogle Scholar
  61. 1865).
    Information provided by S. Chakrabarti of Boston University, Boston, MAGoogle Scholar
  62. 1866).
    D. M. Cotton, et al, “A single-element imaging spectrograph,” Applied Optics, Vol. 33, 1994, p. 1958CrossRefGoogle Scholar
  63. 1867).
    J. S. Vickers, et al., “Gas ionization solar spectral monitor (GISSMO),” Optical Engineering, Vol. 32, 1993, p.3126CrossRefGoogle Scholar
  64. 1868).
    Information provided by D. Forrest of the University of New Hampshire at DurhamGoogle Scholar
  65. 1869).
    C. Wood, D. Forrest B. McKinnon, D. Nelson, “CATSAT Structural Design,” Proceedings of the AIAA/USU Conference on Small Satellites, Sept. 16–19, 1996, Logon, UTGoogle Scholar
  66. 1870).
    http://www.catsat.sr.unh.edu/mission/index.html
  67. 1871).
    G. W. Milne, A. Schoonwinkel, et al., “SUNSAT — Launch and first Six Month’s Orbital Performance,” Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites, Aug. 23–26, 1999, Logan Utah, SSC99–1–4Google Scholar
  68. 1872).
    A. Schoonwinkel, G. W. Milne, et al., “Pre-Flight Performance of SUNSAT, South Africa’s First Remote Sensing and Packet Communications Microsatellite,” Proceedings of the 10th Annual AIAA/USU Conference on Small Satellites, Sept. 16–19, 1996Google Scholar
  69. 1873).
    http://sgra.jpl.nasa.gov/html_surfsat/SURFSATHomePage.html
  70. 1874).
    Note: The microsatellite is named in honor of Joseph and Rosalind Gurwin whose long-term support for space research at Technion enabled the TechSat mission.Google Scholar
  71. 1875).
    Information provided by R. Waller of Technion.Google Scholar
  72. 1876).
    http://www.technion.ac.il/shell/Research/Space-Institute.html
  73. 1877).
    M. Guelman, F. Ortenberg, A. Shiryaev, R. Waller, “Microsatellites for Science and Technology: Gurwin-TechSat in-flight Experiments Results,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 67–70Google Scholar
  74. 1878).
  75. 1879).
    http://www.technion.ac.il/pub/projects/techsat/asher/asri.html
  76. 1880).
    A. Devir, F. Ortenberg, “Space-based small ultraviolet photometer for the measurement of the ozone concentration in the Earth’s atmosphere,” Proceedings of SPIE, Vol. 3110, 1997, pp. 161–170CrossRefGoogle Scholar
  77. 1881).
    M. Guelman, F. Ortenberg, B. Wolfson, “Flight Tests of the novel TechSat Satellite Ozone Meter: Algorithms and Measurement Processing Results,” Proceedings of the 40th Israel Annual Conference of Aerospace Sciences, 2000, pp. 299–310Google Scholar
  78. 1882).
    J. Barak, E. Adler, M. Murât, et al.,“The SOREQ Radiation Monitor for Detecting Protons and Heavy Ions in Space and its Preliminary Flights Data on Gurwin II TechSat,” Proceedings of the 14th AMSAT-UK Colloquium Space-Communication-99, University of Surrey, July 23–25, 1999, pp. 2–9Google Scholar
  79. 1883).
    E. Polturak, G. Koren, et al., “Design and Performance of a Space Based High Temperature Superconductivity Experiment,” Proceedings of the 14th AMSAT-UK Colloquium Space-Communication-99, University of Surrey, July 23–25, 1999, pp. 10–14Google Scholar
  80. 1884).
    E. Polturak, G. Koren, M. Ayalon, “Space Based High Temperature Superconductivity Experiment,” Proceedings of the 40th Israel Annual Conference of Aerospace Sciences, 2000Google Scholar
  81. 1885).
    Information provided by U. Renner of TUBGoogle Scholar
  82. 1886).
    U. Renner, “Small Satellites at the Technical University of Berlin,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 253–256Google Scholar
  83. 1887).
    Note: SS-N-23 is the NATO designation for the Russian RCM 54 missile, built by the Makeyew State Rocket Center of Miass (a town in the Ural Mountains).Google Scholar
  84. 1888).
    R. Schulte, “TUBSAT-N, A Global Communication Satellite System, Based on Nanosatellites,” Proceedings of the 4th International Symposium on “Small Satellites Systems and Services,” Sept. 14–18, 1998, Antibes Juan les Pins, FranceGoogle Scholar
  85. 1889).
    M. Steckling, U. Renner, H. P. Röser, “DLR-TUBSAT, a Multipurpose Microsatellite for Varying Earth Observation Applications,” IAA 2nd International Symposium on Small Satellites for Earth Observation, Berlin, April 12–16, 1999, pp. 347–350Google Scholar
  86. 1890).
    U. Renner, Earth Observation with TUBSAT-C,” 4th International Symposium: Small Satellites Systems and Services, Antibes, France, Sept. 14–18, 1998Google Scholar
  87. 1891).
    S. Roemer, U. Renner, “Flight Experiences with DLR-TUBSAT,” Proceedings of the 3rd International Symposium of IAA, Berlin, April 2–6, 2001, pp. 75–78Google Scholar
  88. 1892).
    ”MAROC-TUBSAT, A Microsatellite for Earth Observation,” TU-Berlin, Ref. 2 EB-MT-R01Google Scholar
  89. 1893).
    F. Graziani, M. Ferrante, G. B. Palmerini, F. Santoni, P. Tortora, “UniSat program: a University Tool for Space Education,” Proceedings of the 51st IAF Congress, Rio de Janeiro, Brazil, Oct. 2–6, 2000, IAF-00-P.2.07Google Scholar
  90. 1894).
    http://pcgauss5.ing.uniroma1.it/entra/attivita/attivita.htm
  91. 1895).
    http://cast.weber.edu/webersat/index.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2002

Authors and Affiliations

  • Herbert J. Kramer
    • 1
  1. 1.GilchingGermany

Personalised recommendations