Advertisement

Forensische Untersuchungen zur Suchtgenese

  • E. Musshoff
  • P. Schmidt
  • B. Madea
Chapter

Zusammenfassung

In der Bundesrepublik Deutschland gelten derzeit ca. 2,5–4 Mio. Menschen als alkohol-, ca. 120 000 Menschen als drogen- und etwa 1,5 Mio. als medikamentenabhängig. Ein Großteil der Abhängigen gerät suchtbedingt in Konflikt mit dem Gesetz; über die juristische Aufarbeitung der Rechtsverstöße ist das Fach Rechtsmedizin in vielfältiger Weise mit den Problemen Süchtiger konfrontiert. Nur am Rande seien typische rechtsmedizinische Aufgaben erwähnt: Nachweis von Alkohol, Drogen und Medikamenten in verschiedenen biologischen Matrizes, z. B. zur Beurteilung der Fahrtüchtigkeit oder zur Beurteilung der tatzeitrelevanten psychophysischen Beeinträchtigung und Schuldfähigkeit oder zur Kontrolle der Abstinenz im Rahmen der Resozialisation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Allievi C, Dostert P, Strolin Benedetti M (1991) Determination of free salsolinol concentrations in human urine using gas chromatography-mass spectrometry. J Chromatogr 568: 271–279PubMedGoogle Scholar
  2. 2.
    Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of substantia nigra by N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 80: 4546–4550PubMedGoogle Scholar
  3. 3.
    Chiba K, Trevor AJ, Castagnoli N (1984) Metabolism of the neurotoxic amine, MPTP, by brain mono amine oxidase. Biochem. Biophys Res Commun 120: 574–578PubMedGoogle Scholar
  4. 4.
    Clow A, Topham A, Saunders JB, Murray R, Sandler M (1985) The role of salsolinol in alcoholic intake and withdrawal. Prog Clin Biol Res 183: 101–113PubMedGoogle Scholar
  5. 5.
    Cohen G, Collins M (1970) Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 167: 1749–1751PubMedGoogle Scholar
  6. 6.
    Collins MA (1982) A possible neurochemical mechanism for brain and nerve damage associated with chronic alcoholism. Trends Pharmacol Sci 3: 373–375Google Scholar
  7. 7.
    Collins MA (1988) Acetaldehyde and its condensation products as markers in alcoholism. Recent Dev Alcohol 6: 387–403PubMedGoogle Scholar
  8. 8.
    Collins MA, Nijm WP, Borge G, Teas G, Goldfarb C (1979) Dopamine-related tetrahydroisoquinolines. Significant urinary excretion by alcoholics following alcohol consumption. Science 206: 1184–1186PubMedGoogle Scholar
  9. 9.
    Davis VE, Walsh MJ (1970) Alcohol, amines, and alkaloids: a possible biochemical basis for alcohol addiction. Science 167: 1005–1007PubMedGoogle Scholar
  10. 10.
    Deng Y, Maruyama W, Dostert P, Takahashi T, Kawai M, Naoi M (1995) Determination of the (R)-and (S)enantiomers of salsolinol and N-methylsalsolinol by use of a chiral high-performance liquid chromatographic column. J Chromatogr B 670: 47–54Google Scholar
  11. 11.
    Dostert P, Strolin Benedetti M, Dordain G (1988) Dopamine-derived alkaloids in alcoholism and in Parkinson’s and Huntington’s disease. J Neural Transm 74: 61–74PubMedGoogle Scholar
  12. 12.
    Dostert P, Strolin Benedetti M, Dordain G, Vernay D (1991) Urinary elimination of salsolinol enantiomers in alcoholics. J Neural Transm 85: 51–59Google Scholar
  13. 13.
    Dufay C, Lecron JC, Daudon F, Gombert J (1991) Rapid and simple procedure for the determination of salsolinol in urine using high-performance liquid chromatography with electrochemical detection [letter]. J Chromatogr 563: 224–227PubMedGoogle Scholar
  14. 14.
    Faraj BA, Camp VM, Davis DC, Lenton JD, Kutner M (1989) Elevation of plasma salsolinol suffate in chronic alcoholics as compared to nonalcoholics. Alcohol Clin Exp Res 13: 155–163PubMedGoogle Scholar
  15. 15.
    Feest U, Kemper A, Nickel B, Rabe H, Koalick F (1991) Comparison of salsolinol excretion in alcoholics and nonalcoholic controls. Alcohol 9: 49–52Google Scholar
  16. 16.
    Feuerlein W, Küfner H, Soyka M (1998) Alkoholismus-Mißbrauch und Abhängigkeit, 5. Aufl. Thieme, StuttgartGoogle Scholar
  17. 17.
    Genazzani AR, Nappi G, Facchinetti F et al. (1982) Central deficiency of β-endorphin in alcohol addicts. Clin Endocrinol Metab 55: 583–586Google Scholar
  18. 18.
    Haber H, Henklein P, Georgi M, Melzig MF (1995) Resolution of catecholic tetrahydroisoquinoline enantiomers and the determination of R-and S-salsolinol in biological samples by gas chromatography-mass spectrometry. J Chromatogr B 672: 179–187Google Scholar
  19. 19.
    Haber H, Melzig M (1992) Tetrahydroisochinoline — endogene Produkte nach chronischem Alkoholmissbrauch. Pharmazie 47: 3–7PubMedGoogle Scholar
  20. 20.
    Haber H, Putscher I, Georgi M, Melzig MF (1995) Influence of ethanol on the salsolinol excretion in healthy subjects. Alcohol 12: 299–303PubMedGoogle Scholar
  21. 21.
    Haber H, Winkler A, Putscher I et al. (1996) Plasma and urine salsolinol in humans: Effect of acute ethanol intake on the enantiomeric composition of salsolinol. Alcoholism Clin Exp Res 20: 87–92Google Scholar
  22. 22.
    Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219: 979–980PubMedGoogle Scholar
  23. 23.
    Maruyama W, Abr T, Toghi H, Dostert P, Naoi M (1996) A dopaminergic neurotoxin, (R)-N-methylsalsolinol, increases in parkinsonian CSF. Ann Neurol 40: 119–122PubMedGoogle Scholar
  24. 24.
    Maruyama W, Dostert P, Matsubara K, Naoi M (1995) N-methyl(R)salsolinol pro duces hydroxyl radicals: involvement to neurotoxicity. Free Radic Biol Med 19: 67–75PubMedGoogle Scholar
  25. 25.
    Maruyama W, Narabayashi H, Dostert P, Naoi M (1996) Stereospecific occurrence of a parkinsonism-inducing catechol isoquinoline, N-methyl(R)salsolinol, in the human intraventricular fluid. J Neural Transm 103: 1069–1076PubMedGoogle Scholar
  26. 26.
    Maruyama W, Sobue G, Matsubara K et al. (1997) A dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2, 3,4-tetrahydroisoquinoline, N-methyl(R)salsolinol, and its oxidation product, 1,2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion, accumulate in the nigrostriatal system of the human brain. Neurosci Lett 223: 61–64PubMedGoogle Scholar
  27. 27.
    Melchior C (1979) Behavioral and biochemical effects of intracerebrally injected alkaloids. Drug Alcohol Depend 4: 347PubMedGoogle Scholar
  28. 28.
    Melzig MF, Putscher I, Haber H, Rottmann M, Zipper J (1998) Toxicity and pharmacological effects of salsolinol in different cultivated cells. In: Moser A (ed) Pharmacology of endogenous neurotoxins — A handbook. Birkhäuser, BostonGoogle Scholar
  29. 29.
    Moser A (1998) Pharmacology of endogenous neurotoxins — A handbook. Birkhäuser, BostonGoogle Scholar
  30. 30.
    Müller T, Przuntek H, Kuhn W et al. (1999) No increase of synthesis of (R)salsolinol in Parkinson’s disease. Mov Disord 14: 514–515PubMedGoogle Scholar
  31. 31.
    Müller T, Sällström Baum S, Haussermann P et al. (1998) Plasma levels of R-and S-salsolinol are not increased in “de-novo” Parkinsonian patients. J Neural Transm 105: 239–246PubMedGoogle Scholar
  32. 32.
    Mußhoff F (1995) Formaldehyd-Neuroamin-Kondensationsprodukte bei chronischen Alkoholikern. Dr. Köster, BerlinGoogle Scholar
  33. 33.
    Mußhoff F, Daldrup T (1998) Determination of biological markers for alcohol abuse (Review). J Chromatogr B 713: 245–264Google Scholar
  34. 34.
    Mußhoff F, Daldrup T, Bonte W, Leitner A, Lesch OM (1996) Formaldehyde-derived tetrahydroisoquinolines and tetrahydro-β-carbolines in human urine. J Chromatogr 683: 163–176Google Scholar
  35. 35.
    Mußhoff F, Daldrup T, Bonte W, Leitner A, Lesch OM (1997) Salsolinol and norsalsolinol in human urine samples. Pharmacol Biochem Behav 58: 545–550PubMedGoogle Scholar
  36. 36.
    Mußhoff F, Schmidt P, Dettmeyer R, Priemer F, Jachau Kadea B (2000) Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol and norsalsolinol in various human brain areas using solid-phase extraction (SPE) and gas chromatography/mass spectrometry (GC/MS). Forensic Sci Int 113: 359–366PubMedGoogle Scholar
  37. 37.
    Mußhoff F, Schmidt P, Dettmeyer R, Priemer F, Wittig H, Madea B (1999) A systematic regional study of dopamine and dopamine-derived salsolinol and norsalsolinol levels in human brain areas. Forensic Sci Int 105: 1–11PubMedGoogle Scholar
  38. 38.
    Myers RD (1989) Isoquinolines, beta-carbolines and alcohol drinking: involvemnt of opioid and dopaminergic mechanisms. Experientia 45: 436–443PubMedGoogle Scholar
  39. 39.
    Myers RD, Melchior CL (1977) Alcohol drinking: Abnormal intake cause by tetrahydropapaveroline in brain. Science 196: 554–556PubMedGoogle Scholar
  40. 40.
    Myers RD, Melchior CL (1977) Differential actions on voluntary alcohol intake of tetrahydroisoquinolines or a beta-carboline infused chronically in the ventricle of the rat. Pharmacol. Biochem Behav 7: 381–392PubMedGoogle Scholar
  41. 41.
    Myers RD, Privette H (1989) A neuroanatomical substrate for alcohol drinking: identification of tetrahydropapaveroline (THP)-reactive sites in the rat brain. Brain Res Bull 22: 899–911PubMedGoogle Scholar
  42. 42.
    Nagatsu T (1997) Isoquinoline neurotoxins in the brain and Parkinson’s disease. Neurosci Res 29: 99–111PubMedGoogle Scholar
  43. 43.
    Naoi M, Maruyama W (1999) N-methyl(R )salsolinol, a dopamine neurotoxin, in Parkinson’s disease. Adv Neurol 80: 259–264PubMedGoogle Scholar
  44. 44.
    Naoi M, Maruyama W, Dostert P (1995) Dopamine-derived 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines; oxidation and neurotoxicity. Prog Brain Res 106: 227–239PubMedGoogle Scholar
  45. 45.
    Naoi M, Maruyama W, Dostert P, Kohda K, Kaiya T (1996) A novel enzyme enantio-selectively synthesizes (R)salsolinol, aprecursor of a dopaminergic neurotoxin, N-methyl(R)salsolinol. Neurosci Lett 212: 183–186PubMedGoogle Scholar
  46. 46.
    Naoi M, Maruyama W, Matsubara K, Hashizume Y (1997) A neutral N-methyltransferase activity in the striatum determines the level of an endogenous MPP+-like neurotoxin, 1,2-dimethyl-6,7-dihydroxyisoquinolinium ion, in the substantia nigra of human brains. Neurosci Lett 235: 81–84PubMedGoogle Scholar
  47. 47.
    Naoi M, Maruyama W, Zhang JH et al. (1995) Enzymatic oxidation of the dopaminergic neurotoxin, 1(R), 2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, into 1, 2(N)-dimethyl-6,7-dihydroxyisoquinolinium ion. Life Sci 57: 1061–1066PubMedGoogle Scholar
  48. 48.
    Privette H, Myers RD (1989) Anatomical mapping of tetrahydropapaveroline-reactive sites in brain mediating suppression of alcohol drinking in the rat. Brain Res Bull 22: 1039–1048PubMedGoogle Scholar
  49. 49.
    Rimpler H (1990) Biogene Arzneistoffe — Pharmazeutische Biologie II. Thieme, StuttgartGoogle Scholar
  50. 50.
    Rommelspacher H (1999) Modelle der Entstehung und Aufrechterhaltung süchtigen Verhaltens. In: Gastpar M, Mann K, Rommelspacher H (Hrsg) Lehrbuch der Suchterkrankungen. Thieme, Stuttgart, S 28–38Google Scholar
  51. 51.
    Rommelspacher H, Sällström Baum S, Dufeu P, Schmidt LG (1995) Determination of (R)-and (S)-salsolinol sulfate and dopamine sulfate levels in plasma of nonalcoholics and alcoholics. Alcohol 12: 309–315PubMedGoogle Scholar
  52. 52.
    Rommelspacher H, Susilo R (1985) Tetrahydroisoquinolines and β-carbolines: putative natural substances in plants and mammals. Prog Drug Res 29: 415–459PubMedGoogle Scholar
  53. 53.
    Sällström Baum S, Rommelspacher H (1994) Determination of total dopamine, R-and S-salsolinol in human plasma by cyclodextrin bonded-phase liquid chromatography with electrochemical detection. J Chromatogr B 660: 235–241Google Scholar
  54. 54.
    Sjöquist B, Borg S, Kavande H (1981) Catecholamine derived compounds in urine and cerebrospinal fluid from alcoholics during and after long-standing intoxication. Subst Alcohol Action Misuse 2: 63–72Google Scholar
  55. 55.
    Strolin Benedetti M, Bellotti U, Pianezzola E et al. (1989) Ratio of the Rand S enantiomer of salsolinol in food and human urine. J Neural Transm 77: 47–53PubMedGoogle Scholar
  56. 1.
    Arvidsson U, Riedl M, Chakrabarti S et al. (1995) Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci 15: 3328–3341.PubMedGoogle Scholar
  57. 2.
    Bankfalvi A, Schmid KE (1994) In-situ-Hybridisierung. Theoretische Grundlagen und praktische Anwendung. Pathologe 15: 76–84PubMedGoogle Scholar
  58. 3.
    Bockstaeie EJ v, Colago EEO, Cheng P, Moriwaki A, Uhl GR, Pickel VM (1996) Ultrastructural evidence for prominent distribution of the mu-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleus locus coeruleus. J Neurosci 16: 5037–5048Google Scholar
  59. 4.
    Bonnet U, Gastpar M (1999) Opioide. In: Gastpar M, Mann K, Rommelspacher H (Hrsg) Lehrbuch der Suchterkrankungen, Einleitung und Geschichte. Thieme, Stuttgart, S 237–262Google Scholar
  60. 5.
    Brady LS, Herkenham M, Long JB, Rothman RB (1989) Chronic morphine increases mu-opiate receptor binding in rat brain: a quantitative autoradiographic study. Brain Res 477: 382–386PubMedGoogle Scholar
  61. 6.
    Brodsky M, Elliott K, Hynansky A, Inturrisi CE (1995) CNS Levels of mu opioid receptor (MOR-1) mRNA during chronic treatment with morphine or naltrexone. Brain Res Bull 38: 135–141PubMedGoogle Scholar
  62. 7.
    Busquets X, Escriba PV, astre M, Garcia-Sevilla JA (1995) Loss of protein kinase C-alpha beta in brain of heroin addicts and morphine-dependent rats. J Neurochem 64: 247–252PubMedGoogle Scholar
  63. 8.
    Buzas B, Rosenberger J, Cox BM (1996) Mu-and deltaopioid receptor gene expression after chronic treatment with opioid agonist. Neuroreport 7: 1505–1508PubMedGoogle Scholar
  64. 9.
    Castelli MP, Melis M, Mameli M et al. (1997) Chronic morphine and naltrexone fail to modify mu-opioid receptor mRNA levels in the rat brain. Mol Brain Res 45: 149–153PubMedGoogle Scholar
  65. 10.
    Childers SR (1991) Opioid receptor-coupled second messenger systems. Life Sci 48: 1991–2003PubMedGoogle Scholar
  66. 11.
    Connor M, McDonald JC (1999) Opioid receptor signalling mechanisms. Clin Exp Pharmacol Physiol 26: 493–499PubMedGoogle Scholar
  67. 12.
    Danks JA, Tortella FC, Long JB et al. (1988) Chronic administration of morphine and naltrexone up-regulate [3H] (D-ALA2,D-LEU5) enkephalin binding sites by different mechanisms. Neuropharmacology 27: 965–974PubMedGoogle Scholar
  68. 13.
    Ding Y-Q, Kaneko T, Nomura S, Mizuno N (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol 367: 375–402PubMedGoogle Scholar
  69. 14.
    Escriba PV, Sastre M, Garcia-Sevilla JA (1994) Increased density of guanine nudeotide-binding proteins in the postmortem brains of heroin addicts. Arch Gen Psychiatry 51: 494–501PubMedGoogle Scholar
  70. 15.
    Garcia-Sevilla JA, Ventayol P, Busquets X, La Harpe R, Walzer C, Guimón J (1997) Regulation of immunolabelled mu-opioid receptors and protein kinase C-α and isoforms in the frontal cortex of human opiate addicts. Neurosci Lett 226: 29–32PubMedGoogle Scholar
  71. 16.
    Geschwinde T (1996) Opium und Opiate. In: Geschwinde T (Hrsg) Rauschdrogen, Marktformen und Wirkungsweisen, 3.Aufl. Springer, Berlin Heidelberg New York Tokio, S 197–288Google Scholar
  72. 17.
    Harrison LM, Kastin AJ, Zadina JE (1998) Opiate tolerance and dependence: receptors, G-proteins and antiopiates. Peptides 19: 1603–1630PubMedGoogle Scholar
  73. 18.
    Herz A (1995) Neurobiologische Grundlagen des Suchtgeschehens. Nervenarzt 66: 3–14PubMedGoogle Scholar
  74. 19.
    Herz A (1997) Endogenous opioid systems and alcohol addiction. Psychopharmacology 129: 95–111Google Scholar
  75. 20.
    Hiller JH, Fan L-Q (1996) Laminar distribution of the multiple opioid receptors in the human cerebral cortex. Neurochem Res 21: 1333–1345PubMedGoogle Scholar
  76. 21.
    Holaday JW, Hitzemann RJ, Curell J et al. (1982) Repeated electroconvulsive shock or chronic morphine treatment increases the number of 3H-D-ALA2-D-LEU5-enkephalin binding sites in rat brain membranes. Life Sci 31: 2359–2362PubMedGoogle Scholar
  77. 22.
    Iten PX (1994) Datenblätter Opiate. In: Iten PX (Hrsg) Fahren unter Drogen-oder Medikamenteneinfluss. Institut für Rechtsmedizin der Universität Zürich, S 186–207Google Scholar
  78. 23.
    Jansen KLR, Faull RLM, Dragunow M, Leslie RA (1991) Distribution of exeitatory and inhibitory amino acid sigma, mono amine, catecholamine, acetylcholine, opioid, neurotensin, substance P, adenosine and neuropeptide Y receptors in human motor and somatosensory cortex. Brain Res 566: 225–238PubMedGoogle Scholar
  79. 24.
    Knapp RJ, Malatynska E, Collins N et al. (1995) Molecular biology and pharmacology of doned opioid receptors. FASEB L: 516–525Google Scholar
  80. 25.
    Koob GF (1992) Drugs of abuse “anatomy” pharmacology and function of reward pathways. TIPS 13: 177–184PubMedGoogle Scholar
  81. 26.
    Linder ME, Gilman AG (1992) G-Proteine. Spektrum-Wiss 92: 54–61Google Scholar
  82. 27.
    Magnan J, Paterson SJ, Tavami A, Osterlitz HW (1982) The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. NaunynSchmiedeberg’s Arch Pharmacol 319: 197–205Google Scholar
  83. 28.
    Mansour A, Fox CA, Thompson RC, Akil H, Watson SJ (1994) Mu-opioid receptor mRNA expression in the rat CNS: comparison to mu-receptor binding. Brain Res 643: 245–265PubMedGoogle Scholar
  84. 29.
    Mansour A, Fox CA, Akil H, Watson SJ (1995) Opioid receptor mRNA expression in the rat CNS: anatomical and functional implications. TINS 18: 22–29PubMedGoogle Scholar
  85. 30.
    Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ (1988) Anatomy of CNS opioid receptors. TINS 11: 308–315PubMedGoogle Scholar
  86. 31.
    Mayer P, Rochlitz H, Rauch E et al. (1997) Association between a delta-opioid receptor gene polymorphism and heroin dependence in man. Neuro Report 8: 2547–2550Google Scholar
  87. 32.
    Morris BJ, Herz A (1989) Control of opiate receptor number in vivo: simultaneous kappa-receptor downregulation and mu-receptor up-regulation following chronic agonist/antagonist treatment. Neuroscience 29: 433–442PubMedGoogle Scholar
  88. 33.
    Mutschier E (1996) Opioid-Analgetika. In: Mutschier E (Hrsg) Arzneimittelwirkungen, 7. Aufl. Wiss. Verlagsges., Stuttgart, S 188–194Google Scholar
  89. 34.
    Nestler EJ, Aghajanian GK (1997) Molecular and cellular basis of addiction. Science 278: 58–62PubMedGoogle Scholar
  90. 35.
    O’Brien CP, Terenius LY, Nyberg F, McLellan AT, Eriksson I (1988) Endogenous opioids in cerebrospinal fluid of opioid-dependent humans. Biol Psychiatry 24: 649–662PubMedGoogle Scholar
  91. 36.
    Peckys D, Landwehrmeyer GB (1999) Expression of mu, kappa and delta opiod receptor messenger RNA in the human CNS. A33]p in situ hybridization study. Neuroscience 88: 1093–1135PubMedGoogle Scholar
  92. 37.
    Pert CB, Snyder SH (1976) Opiate receptor binding-enhancement by opiate administration in vivo. Biochem Pharmacol 25: 847–853PubMedGoogle Scholar
  93. 38.
    Petruzzi R, Ferraro TN, Kürschner VC, Golden GT, Berrettini WH (1997) The effects of repeated morphine exposure on mu-opioid receptor number and affinity in C57BL/GJ and DBA/2 J mice. Life Sci 61: 2057–2064PubMedGoogle Scholar
  94. 39.
    Przewlocki R (1993) Opioid systems and stress. In: Herz A (Hrsg) Opioids. Springer, Berlin Heidelberg New York Tokio, S 293–324Google Scholar
  95. 40.
    Quirion R, Pilapil C, Allaoua H, Chaudieu I (1995) Autoradiographic distribution of multiple opioid, sigma, and phencydidine receptor binding sites in the human brain. In: Biegon A, Volkow ND (eds) Sites of drug action in the human brain. CRC Press, Boca Raton Ann Arbor London Tokyo, pp 117–141Google Scholar
  96. 41.
    Quock RM, Burkey TH, Varga E et al. (1999) The delta, opioid receptor: molecular pharmacology, signal transduction and the determination of drug efficacy. Pharmacol Rev 51: 503–527PubMedGoogle Scholar
  97. 42.
    Reisine T (1995) Opiate receptors. Neuropharmacol 34: 463–472Google Scholar
  98. 43.
    Reisine T, Pasternak G (1995) Opiod analgesics and antagonists. In: Hardman JG, Limbird LE, Molinoff MD, Raymond WR (eds) The pharmacological basis of therapeutics (Goodman & Gilman’s Edn). McGraw-Hill, New York, pp 521–555Google Scholar
  99. 44.
    Rommelspacher H (1999) Modelle der Entstehung und Aufrechterhaltung süchtigen Verhaltens. In: Gastpar M, Mann K, Rommelspacher H (Hrsg) Neurobiologische Ansätze, Lehrbuch der Suchterkrankungen. Thieme, Stuttgart, S 28–39Google Scholar
  100. 45.
    Rothman RB, Bykov V, Long JB et al. (1989) Chronic administration of morphine and naltrexone up-regulate mu-opioid binding sites labeled by [3H] [D-Ala2, MePhe4, Gly-ol5]enkephalin: further evidence for two mu-binding sites. Eur J Pharmacol 160: 71–82PubMedGoogle Scholar
  101. 46.
    Rothmann RB, Danks JA, Jacobson AE et al. (1986) Morphine tolerance increases mu-noncompetitive delta binding sites. Eur J Pharmacol 124: 113–119Google Scholar
  102. 47.
    Sanchez-Blázquez P, Garcia-Espana A, Garzón J (1997) Antisense oligodeoxynudeotides to opioid mu and delta receptors reduced morphine dependence in mice: role of delta-2-opioid receptors. J Pharmacol Exp Ther 280: 1423–1431PubMedGoogle Scholar
  103. 48.
    Schmidt P, Schmolke C, Mußhoff F, Prohaska C, Menzen M, Madea B (2001) Numerical density of mu opioidreceptor expressing neurons in the frontal cortex of drug related fatalities. Forensic Sci Int 115: 219–229PubMedGoogle Scholar
  104. 49.
    Schröder H, Giacobini E, Struble RG et al. (1991) Muscarinic cholinoceptive neurons in the frontal cortex in Alzheimer’s disease. Brain Res Bull 27: 631–636PubMedGoogle Scholar
  105. 50.
    Schwartz JH, andel ER (1996) Modulation der synaptischen übertragung: Second-messenger-Systeme. In: Kandel ER, Schwartz JH, Jessell TM (Hrsg) Neurowissenschaften. Spektrum Akademischer Verlag, Heidelberg Berlin Oxford, S 249–273Google Scholar
  106. 51.
    Sharma SK, Klee WA, Nirenberg M (1975) Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance. Proc Natl Acad Sci USA 72: 3092–3096PubMedGoogle Scholar
  107. 52.
    Simon EJ (1991) Opiate receptors and endogenous opioid peptides. Med Res Rev 11: 357–374PubMedGoogle Scholar
  108. 53.
    Standifer KM, Pasternak GW (1997) G-proteins and opioid receptor-mediated signalling. Cell Signal 9: 237–248PubMedGoogle Scholar
  109. 54.
    Sternberger LA (1986) Immunocytochemistry, 3rd edn. Wiley, New York, pp 1–524Google Scholar
  110. 55.
    Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM (1996) Ultrastructural immunocytochemical localization of mu-opioid receptors in rat nucleus accumbens: Extrasynaptic plasmalemmal distribution and Association with Leu5-enkephalin. J Neurosci 16: 4162–4173PubMedGoogle Scholar
  111. 56.
    Tao P-L, Law P-Y, Loh HH (1987) Decrease in delta and mu opioid receptor binding capacity in rat brain after chronic etorphine treatment. J Pharmacol Exp Ther 240: 809–816PubMedGoogle Scholar
  112. 57.
    Turchan J, Przewlocka B, Toth G, Lason W, Borsodi A, Przewlocki R (1999) The effect of repeated administration of morphine, cocaine and ethanol on mu-and delta-opioid receptor density in the nucleus accumbens and striatum of the rat. Neuroscience 91: 971–977PubMedGoogle Scholar
  113. 58.
    Unterwald EM, Rubenfeld JM, Imai Y et al. (1995) Chronic opioid antagonist administration upregulates mu opioid receptor binding without altering mu opioid receptor mRNA levels. Mol Brain Res 33: 351–355PubMedGoogle Scholar
  114. 59.
    Ventayol P, Busquets X, Garcia-Sevilla JA (1997) Modulation of immunoreactive protein kinase C-alpha and beta isoforms and G proteins by acute and chronic treatments with morphine and other opiate drugs in rat brain. Naunyn-Schmiedeberg’s Arch Pharmacol 355: 491–500Google Scholar
  115. 60.
    Wamsley JK (1983) Opioid receptors: autoradiography. Pharmacol Rev 35: 69–83PubMedGoogle Scholar
  116. 61.
    Wang H, Moriwaki A, Wang JB, Uhl GR, Pickel VM (1997) Ultrastructural immunocytochemical localization of mu-opioid receptors in dendritic targets of dopaminergic terminals in the rat caudate-putamen nucleus. Neuroscience 81: 757–771PubMedGoogle Scholar
  117. 62.
    Wang JB, Johnson PS, Persico AM, Hawkins AL, Griffin CA, Uhl GR (1994) Human mu-opiate receptor: cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett 338: 217–222PubMedGoogle Scholar
  118. 63.
    Yoburn B C, Billings B, Duttaroy A (1993) Opioid receptor regulation in mice. J Pharmacol Exp Ther 265: 314–319PubMedGoogle Scholar
  119. 64.
    Zieglgänsberger W, Spanagel R (1999) Molekularbiologie der Sucht. In: Ganten D, Ruckpaul K (Hrsg) Erkrankungen des Zentralnervensystems, Handbuch der molekularen Medizin, Bd 5. Springer, Berlin Heidelberg New York Tokio, S 237–272Google Scholar
  120. 65.
    Zukin RS, Pellegrini-Giampietro DE, Knapp CM, Tempel A (1993) Opioid receptor regulation. In: Herz A (Hrsg) Opioids. Springer, Berlin Heidelberg New York Tokio, S 107–123Google Scholar
  121. 66.
    Zukin RS, Sugarman JR, Fitz-Syage ML, Gardner EL, Zukin SR, Gintzler AR (1982) Naltrexone-induced opiate receptor supersensitivity. Brain Res 245: 285–292PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • E. Musshoff
  • P. Schmidt
  • B. Madea

There are no affiliations available

Personalised recommendations