Advertisement

Parametric and Quantitative Extensions of Modal Transition Systems

  • Uli Fahrenberg
  • Kim Guldstrand Larsen
  • Axel Legay
  • Louis-Marie Traonouez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8415)

Abstract

Modal transition systems provide a behavioral and compositional specification formalism for reactive systems. We survey two extensions of modal transition systems: parametric modal transition systems for specifications with parameters, and weighted modal transition systems for quantitative specifications.

Keywords

Model Check Transition System Software Product Line Label Transition System Truth Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bauer, S.S., Fahrenberg, U., Juhl, L., Larsen, K.G., Legay, A., Thrane, C.: Quantitative refinement for weighted modal transition systems. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 60–71. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bauer, S.S., Fahrenberg, U., Legay, A., Thrane, C.: General quantitative specification theories with modalities. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 18–30. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bauer, S.S., Juhl, L., Larsen, K.G., Legay, A., Srba, J.: Extending modal transition systems with structured labels. Mathematical Structures in Computer Science 22(4), 581–617 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Beneš, N., Křetínský, J., Larsen, K.G., Møller, M.H., Srba, J.: Parametric modal transition systems. In: Bultan, T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 275–289. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Beneš, N., Křetínský, J.: Process algebra for modal transition systemses. In: MEMICS. OASICS, vol. 16, pp. 9–18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  6. 6.
    Boudol, G., Larsen, K.G.: Graphical versus logical specifications. In: Arnold, A. (ed.) CAAP 1990. LNCS, vol. 431, pp. 57–71. Springer, Heidelberg (1990)Google Scholar
  7. 7.
    Černý, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput. Sci. 413(1), 21–35 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: Model checking discounted temporal properties. Theor. Comput. Sci. 345(1), 139–170 (2005)MathSciNetCrossRefGoogle Scholar
  9. 9.
    de Alfaro, L., Faella, M., Stoelinga, M.: Linear and branching system metrics. IEEE Trans. Software Eng. 35(2), 258–273 (2009)CrossRefGoogle Scholar
  10. 10.
    Fahrenberg, U., Legay, A., Thrane, C.: The quantitative linear-time–branching-time spectrum. In: FSTTCS. LIPIcs, vol. 13, pp. 103–114. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)Google Scholar
  11. 11.
    Fahrenberg, U., Legay, A., Traonouez, L.-M.: Specification theories for probabilistic and real-time systems. In: Bensalem, S., Lakhnech, Y., Legay, A. (eds.) FPS 2014 (Sifakis Festschrift). LNCS, vol. 8415, pp. 98–117. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Fahrenberg, U., Thrane, C.R., Larsen, K.G.: Distances for weighted transition systems: Games and properties. In: QAPL. Electr. Proc. Theor. Comput. Sci., vol. 57, pp. 134–147 (2011)Google Scholar
  13. 13.
    Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an one-selecting variant. J. Logic Alg. Program. 77(1-2), 20–39 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Godefroid, P., Huth, M., Jagadeesan, R.: Abstraction-based model checking using modal transition systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 426–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Graf, S., Sifakis, J.: A logic for the description of non-deterministic programs and their properties. Inf. Control 68(1-3), 254–270 (1986)CrossRefGoogle Scholar
  16. 16.
    Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 113–131. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Holmström, S.: A refinement calculus for specifications in Hennessy-Milner logic with recursion. Formal Asp. Comput. 1(3), 242–272 (1989)CrossRefGoogle Scholar
  18. 18.
    Huth, M., Jagadeesan, R., Schmidt, D.A.: Modal transition systems: A foundation for three-valued program analysis. In: Sands, D. (ed.) ESOP 2001. LNCS, vol. 2028, pp. 155–169. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Juhl, L., Larsen, K.G., Srba, J.: Modal transition systems with weight intervals. J. Log. Algebr. Program. 81(4), 408–421 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Larsen, K.G.: A context dependent equivalence between processes. Theor. Comput. Sci. 49, 184–215 (1987)CrossRefGoogle Scholar
  21. 21.
    Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  22. 22.
    Larsen, K.G., Nyman, U., Wąsowski, A.: On modal refinement and consistency. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE Computer Society (1988)Google Scholar
  24. 24.
    Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp. 108–117. IEEE Computer Society (1990)Google Scholar
  25. 25.
    Mardare, R., Policriti, A.: A complete axiomatic system for a process-based spatial logic. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 491–502. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Nanz, S., Nielson, F., Riis Nielson, H.: Modal abstractions of concurrent behaviour. In: Alpuente, M., Vidal, G. (eds.) SAS 2008. LNCS, vol. 5079, pp. 159–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Passerone, R.: Why are modalities good for interface theories? In: ACSD, pp. 119–127. IEEE (2009)Google Scholar
  28. 28.
    Uchitel, S., Chechik, M.: Merging partial behavioural models. In: FSE, pp. 43–52. ACM (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Uli Fahrenberg
    • 1
  • Kim Guldstrand Larsen
    • 2
  • Axel Legay
    • 1
  • Louis-Marie Traonouez
    • 1
  1. 1.Inria/IRISARennesFrance
  2. 2.Aalborg UniversityAalborgDenmark

Personalised recommendations