Simulation in Amorphous Silicon and Amorphous Silicon Carbide Pin Diodes

  • Dora Gonçalves
  • Miguel Fernandes
  • Paula Louro
  • Alessandro Fantoni
  • Manuela Vieira
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 423)

Abstract

Photodiodes are devices used as image sensors, reactive to polychromatic light and subsequently color detecting, and they are also used in optical communication applications. To improve these devices performance it is essential to study and control their characteristics, in fact their capacitance and spectral and transient responses. This study considers two types of diodes, an amorphous silicon pin and an amorphous silicon carbide pin, whose major characteristics are simulated, using the AFORS-HET program .The pin diode structure can be defined using contacts, interfaces and optical layers and then common measurements can be simulated by a numerical model, the AFORS-HET program. I-V, C-V characteristics, spectral response are simulated for both devices, without and under different illumination wavelengths. The results will allow a comparison between the main properties of amorphous silicon and amorphous silicon carbide diodes. We can conclude that sinusoidal frequency varies capacitance values as well as incident light wavelength. And when carbon is included in an amorphous silicon diode structure, its electrical and optical properties change.

Keywords

Photodiode amorphous silicon background illumination 

References

  1. 1.
    Rajagopal, S., Roberts, R.D., Lim, S.-K.: IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Communic. Magazine 50 (2010)Google Scholar
  2. 2.
    Deng, X., Schiff, E.A.: Amorphous Silicon–based Solar Cells. In: Handbook of Photovoltaic Science and Engineering. John Wiley & Sons (2003)Google Scholar
  3. 3.
    Vieira, M., Vieira, M.A., Louro, P., Fernandes, M., Fantoni, A., Silva, V.: SiC multilayer photonic structures with self optical bias amplification. In: MRS Proceedings, vol. 1426 (2012)Google Scholar
  4. 4.
    Fantoni, A., Fernandes, M., Louro, P., Vieira, M.A., Vieira, M.: Capacitive effects in pinpin photodiodes. Microelectronic Engineering 108, 195–199 (2013)CrossRefGoogle Scholar
  5. 5.
    Gonçalves, D., Fernandes, L.M., Louro, P., Vieira, M., Fantoni, A.: Measurement of Photo Capacitance in Amorphous Silicon Photodiodes. In: Camarinha-Matos, L.M., Tomic, S., Graça, P. (eds.) DoCEIS 2013. IFIP AICT, vol. 394, pp. 547–554. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  6. 6.
    Fantoni, A., Vieira, M., Cruz, J., Schwarz, R., Martins, R.: A two-dimensional numerical simulation of a non-uniformly illuminated amorphous silicon solar cell. Journal of Physics D: Applied Physics 29, 3154 (1996)CrossRefGoogle Scholar
  7. 7.
    Stangl, R., Leendertz, C., Haschke, J.: Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET. In: Rugescu, R.D. (ed.) Solar Energy, pp. 319–352. INTECH (2010)Google Scholar
  8. 8.
    Fantoni, A., Viera, M., Martins, R.: Influence of the intrinsic layer characteristics on a-Si: H p–i–n solar cell performance analysed by means of a computer simulation. Solar Energy Materials and Solar Cells 73, 151–162 (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Dora Gonçalves
    • 1
  • Miguel Fernandes
    • 1
    • 2
  • Paula Louro
    • 1
    • 2
  • Alessandro Fantoni
    • 1
    • 2
  • Manuela Vieira
    • 1
    • 2
    • 3
  1. 1.ADEETC, ISELLisbonPortugal
  2. 2.CTS-UNINOVACaparicaPortugal
  3. 3.DEE-FCT-UNLCaparicaPortugal

Personalised recommendations