Sliding Mode Control of Unified Power Quality Conditioner for 3 Phase 4 Wire Systems

  • Nelson Santos
  • J. Fernando A. Silva
  • João Santana
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 423)

Abstract

This paper presents the sliding mode control (SMC) of unified power quality conditioners (UPQC) intended to compensate power quality issues in three-phase four-wires systems. The SMC UPQC can be applied in electrical grids or isolated grids to mitigate power quality problems at the consumer facilities and also to minimize issues for the grid supplier. The UPQC is configured as a shunt-series filter. The shunt Active Power Filter (APF) uses a three-phase rectifier with SMC to enforce sinusoidal mains currents. The series APF uses three single-phase H-bridge inverters and SMC to improve the voltage quality at the point of common coupling. SMC design, analysis and simulation results are presented and discussed.

Keywords

Unified Power Quality Conditioner Active Power Filter Sliding Mode Control 

References

  1. 1.
    Farias, M.F., Battaiotto, P.E., Cendoya, M.G.: Wind Farm to Weak-Grid Connection using UPQC custom power device. In: IEEE International Conference on Industrial Technology (ICIT), pp. 1745–1750 (March 2010)Google Scholar
  2. 2.
    Babu, C., Dash, S.S.: Design of Unified Power Quality conditioner (UPQC) to improve the Power Quality Problems by Using P-Q Theory. In: International Conference on Computer Communication and Informatics (2012)Google Scholar
  3. 3.
    Khadkikar, V.: Enhancing Electric Power Quality Using UPQC: A Comprehensive Overview. IEEE Transactions on Power Electronics 27(5), 2284–2297 (2012)CrossRefGoogle Scholar
  4. 4.
    Hirve, S., Chatterjee, K., Fernandes, B.G., Imayavaramban, M., Dwari, S.: PLL-Less Active Power Filter Based on One-Cycle Control for Compensating Unbalanced Loads in Three-Phase Four-Wire System. IEEE Trans. Power Delivery 22(4), 2457–2465 (2007)CrossRefGoogle Scholar
  5. 5.
    Silva, J.F., Pinto, S.F.: Advanced Control of Switching Power Converters. In: Rashid, M., et al. (eds.) Power Electronics Handbook, ch. 36, 3rd edn., pp. 1037–1114. Butterworth Heinemann, Chennai (2011)CrossRefGoogle Scholar
  6. 6.
    Silva, J.F.: PWM Audio Power Amplifiers: Sigma Delta Versus Sliding Mode Control. In: Proc. IEEE/ICECS 1998, Lisboa, Portugal, Set, vol. 1, pp. 359-362 (1998) ISBN 0-7803-5008-1Google Scholar
  7. 7.
    Bin, X.B.X., Ke, D.K.D., Yong, K.Y.K.: DC voltage control for the three-phase four-wire Shunt split-capacitor Active Power Filter. In: IEEE International Electric Machines and Drives Conference, pp. 1669–1673 (May 2009)Google Scholar
  8. 8.
    Bajracharya, C., Molinas, M., Ieee, M., Suul, J.A., Undeland, T.M., IEEE, F.: Understanding of tuning techniques of converter controllers for VSC-HVDC. In: Nordic Workshop on Power and Industrial Electronics (June 2008)Google Scholar
  9. 9.
    Silva, J.F., Rodrigues, N., Costa, J.: Space Vector Alpha-Beta Sliding Mode Current Controllers for Three-Phase Multilevel Inverters. In: Silva, J.F., Rodrigues, N., Costa, J. (eds.) IEEE Proc. PESC 2000, Galway, Ireland (June 2000) CD ROM ISBN 0-7803-5695-0Google Scholar
  10. 10.
    Martins, J.F., Pires, A.J., Fernando Silva, J.: A Novel and Simple Current Controller for Three-Phase PWM Power Inverters. IEEE Trans. on Industrial Electronics 45(5), 802–805 (1998)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Nelson Santos
    • 1
  • J. Fernando A. Silva
    • 2
  • João Santana
    • 2
  1. 1.Instituto Superior de Engenharia de LisboaLisboaPortugal
  2. 2.Instituto Superior Técnico, Instituto Superior Técnico, INESC-id, DEEC, AC EnergiaLisboaPortugal

Personalised recommendations