Renewable Power Forecast to Scheduling of Thermal Units

  • Pedro M. Fonte
  • Bruno Santos
  • Cláudio Monteiro
  • João P. S. Catalão
  • Fernando Maciel Barbosa
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 423)

Abstract

In this work is discussed the importance of the renewable production forecast in an island environment. A probabilistic forecast based on kernel density estimators is proposed. The aggregation of these forecasts, allows the determination of thermal generation amount needed to schedule and operating a power grid of an island with high penetration of renewable generation. A case study based on electric system of S. Miguel Island is presented. The results show that the forecast techniques are an imperative tool help the grid management.

Keywords

Probabilistic renewable power forecast kernel density estimator Power scheduling 

References

  1. 1.
    Sengupta, M., Keller, J.: PV ramping in a distributed generation environment: A study using solar measurements. In: 2012 38th IEEE Photovoltaic Specialists Conference (PVSC), June 3-8, pp. 586–589 (2012)Google Scholar
  2. 2.
    Bessa, R.J., Miranda, V., Botterud, A., Wang, J.: Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting. IEEE Transactions on Sustainable Energy (October 2012)Google Scholar
  3. 3.
    Juban, J., Fugon, L., Kariniotakis, G.: Probabilistic short-term wind power forecasting based on kernel density estimators. In: European Wind Energy Conf. (May 2007)Google Scholar
  4. 4.
    Bludszuweit, H., Dominguez-Navarro, J.A., Llombart, A.: Statistical Analysis of Wind Power Forecast Error. IEEE Transactions on Power Systems, 983–991 (August 2008)Google Scholar
  5. 5.
    Jeon, J., Taylor, J.W.: Using Conditional Kernel Density Estimation forWind Power Density Forecasting. J. American Statistical Association 107, 66–79 (2012)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Al-Awami, A.T., El-Sharkawi, M.A.: Statistical characterization of wind power output for a given wind power forecast. In: 41st North American Power Symposium, vol. (1), pp. 1–4 (2009)Google Scholar
  7. 7.
    Matos, M.A., Bessa, R.J.: Setting the Operating Reserve Using Probabilistic Wind Power Forecasts. IEEE Transactions on Power Systems 26 (May 2011)Google Scholar
  8. 8.
    Bremnes, J.B.: Probabilistic wind power forecasts using local quantile regression. Wind Energy 1(1), 47–54 (2004)Google Scholar
  9. 9.
    Fu, G., Shih, F.Y., Wang, H.: A kernel-based parametric method for conditional density estimation. Pattern Recognition 44(2), 284–294 (2011)CrossRefMATHGoogle Scholar
  10. 10.
    Demir, S.: On the Adaptive Nadaraya-Watson. Journal of Mathematic and Statistics 39(3), 429–437 (2010)MATHMathSciNetGoogle Scholar
  11. 11.
    Monteiro, C., Ramirez-Rosado, I.J., Fernandez-Jimenez, L.A.: Short-term forecasting model for electric power production of small-hydro power plants. Renewable Energy (6), 387–394 (2013)Google Scholar
  12. 12.
    Williamson, R.C.: Probabilistic Arithmetic, University of Queensland, Ph.D. Thesis (1989)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2014

Authors and Affiliations

  • Pedro M. Fonte
    • 1
    • 3
  • Bruno Santos
    • 2
  • Cláudio Monteiro
    • 2
    • 3
  • João P. S. Catalão
    • 4
  • Fernando Maciel Barbosa
    • 3
    • 5
  1. 1.ISEL – Lisbon Superior Engineering InstituteLisbonPortugal
  2. 2.Smartwatt,S.APortugal
  3. 3.University of PortoPortugal
  4. 4.INESC TEC PORTOPortoPortugal
  5. 5.University of Beira InteriorCovilhãPortugal

Personalised recommendations