Exemplar-Based Hole-Filling Technique for Multiple Dynamic Objects

  • Matteo Pagliardini
  • Yasuhiro Akagi
  • Marcos Slomp
  • Ryo Furukawa
  • Ryusuke Sagawa
  • Hiroshi Kawasaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)

Abstract

Entire shape reconstruction of dynamic objects is an important research subject with applications on film production, virtual reality, modeling and engineering. Typically, entire shape reconstruction of real objects is achieved by combining the outcome of objects scanned from multiple directions. However, due to limitations on the number of 3D sensors enclosing the scene, occlusions inevitably occur, causing holes to appear on the reconstructed surfaces. These issues are intensified if dynamic, moving objects are considered. Volumetric and polygonal approaches exist to address these problems. Most notably, exemplar-based polygonal methods have gained momentum due to their overall improved visual quality. In this paper we propose an extension to the plain exemplar-based technique that allows for multiple dynamic objects. With our method, adequate hole-filling candidates are sampled from spatial and temporal domains and then used to synthesize likely plausible surfaces with smooth boundaries for the hole regions.

Keywords

3D scan hole filling exemplar based technique 

References

  1. 1.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: ACM SIGGRAPH, pp. 71–78. ACM Press (1992)Google Scholar
  2. 2.
    Whitaker, R.T.: A level-set approach to 3d reconstruction from range data. IJCV 29(3), 203–231 (1998)CrossRefGoogle Scholar
  3. 3.
    Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: SIGGRAPH 1994, pp. 311–318. ACM Press (1994)Google Scholar
  4. 4.
    Curless, B., Levoy, M.: A volumetric method for building complex models from range images. Computer Graphics 30(Annual Conference Series), 303–312 (1996)Google Scholar
  5. 5.
    Masuda, T.: Registration and integration of multiple range images by matching signed distance fields for object shape modeling. CVIU 87(1-3), 51–65 (2002)MATHGoogle Scholar
  6. 6.
    Sagawa, R., Nishino, K., Ikeuchi, K.: Adaptively merging large-scale range data with reflectance properties. IEEE Trans. on PAMI 27(3), 392–405 (2005)CrossRefGoogle Scholar
  7. 7.
    Furukawa, R., Itano, T., Morisaka, A., Kawasaki, H.: Shape-merging and interpolation using class estimation for unseen voxels with a gpu-based efficient implementation. In: IEEE The 6th International Conference on 3-D Digital Imaging and Modeling, pp. 289–296 (2007)Google Scholar
  8. 8.
    Furukawa, R., Itano, T., Morisaka, A., Kawasaki, H.: Improved space carving method for merging and interpolating multiple range images using information of light sources of active stereo. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part II. LNCS, vol. 4844, pp. 206–216. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. In: SIGGRAPH 1987, pp. 163–169. ACM Press, New York (1987)Google Scholar
  10. 10.
    Bolitho, M., Kazhdan, M., Burns, R., Hoppe, H.: Parallel poisson surface reconstruction. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 678–689. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville (2006)Google Scholar
  12. 12.
    Kawai, N., Sato, T., Yokoya, N.: Efficient surface completion using principal curvature and its evaluation. In: ICIP, pp. 521–524 (2009)Google Scholar
  13. 13.
    Kawai, N., Sato, T., Yokoya, N.: Surface completion by minimizing energy based on similarity of shape. In: ICIP, pp. 1532–1535 (2008)Google Scholar
  14. 14.
    Kawai, N., Zakhor, A., Sato, T., Yokoya, N.: Surface completion of shape and texture based on energy minimization. In: ICIP, pp. 897–900 (2011)Google Scholar
  15. 15.
    Zhao, K.H., Osher, S., Fedkiw, R.: Fast surface reconstruction using the level set method. In: First IEEE Workshop on Variational and Level Set Methods, pp. 194–202 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Matteo Pagliardini
    • 1
    • 2
  • Yasuhiro Akagi
    • 1
  • Marcos Slomp
    • 1
    • 3
  • Ryo Furukawa
    • 3
  • Ryusuke Sagawa
    • 4
  • Hiroshi Kawasaki
    • 1
  1. 1.Kagoshima UniversityKagoshimaJapan
  2. 2.CPE LyonVilleurbanneFrance
  3. 3.Hiroshima City UniversityHiroshimaJapan
  4. 4.AISTTsukubaJapan

Personalised recommendations