Efficiency Analysis of POC-Derived Bases for Combinatorial Motion Estimation

  • Alejandro Reyes
  • Alfonso Alba
  • Edgar Arce-Santana
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8333)

Abstract

Motion estimation is a fundamental problem in many computer vision applications. One solution to this problem consists in defining a large enough set of candidate motion vectors, and using a combinatorial optimization algorithm to find, for each point of interest, the candidate which best represents the motion at the point of interest. The choice of the candidate set has a direct impact in the accuracy and computational complexity of the optimization method. In this work, we show that a set containing the most representative maxima of the phase-correlation function between the two input images, computed for different overlapping regions, provides better accuracy and contains less spurious candidates than other choices in the literature. Moreover, a pre-selection stage, based in a local motion estimation algorithm, can be used to further reduce the cardinality of the candidate set, without affecting the accuracy of the results.

Keywords

Ground Truth Motion Vector Motion Estimation Block Match Reduction Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. International Journal of Computer Vision 12, 43–77 (1994)CrossRefGoogle Scholar
  2. 2.
    Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic scene flow computation for 3d motion understanding. International Journal of Computer Vision 95, 29–51 (2011)CrossRefMATHGoogle Scholar
  3. 3.
    Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. International Journal of Computer Vision 92, 1–31 (2011)CrossRefGoogle Scholar
  4. 4.
    Horn, B.K.P., Schunck, B.G.: Determining Optical Flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  5. 5.
    Viola, P., Jones, M.: Robust Real-time Object Detection. International Journal of Computer Vision 57, 137–154 (2002)CrossRefGoogle Scholar
  6. 6.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  7. 7.
    Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 787–800 (2003)CrossRefGoogle Scholar
  8. 8.
    Ramirez-Manzanares, A., Rivera, M., Kornprobst, P., Lauze, F.: Variational multi-valued velocity field estimation for transparent sequences. Journal of Mathematical Imaging and Vision 40, 285–304 (2011)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Veksler, O.: Reducing search space for stereo correspondence with graph cuts. In: British Machine Vision Conference, vol. 2, pp. 709–719 (2006)Google Scholar
  10. 10.
    Alba, A., Arce-Santana, E., Aguilar Ponce, R.M., Campos-Delgado, D.U.: Phase-correlation guided area matching for realtime vision and video encoding. Journal of Real-Time Image Processing (2012) (in press)Google Scholar
  11. 11.
    Rivera, M., Ocegueda, O., Marroquin, J.: Entropy-controlled quadratic markov measure field models for efficient image segmentation. IEEE Transactions on Image Processing 16, 3047–3057 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Reyes, A., Alba, A., Arce-Santana, E.R.: Optical flow estimation using phase only-correlation. Procedia Technology 7, 103–110 (2013)CrossRefGoogle Scholar
  13. 13.
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alejandro Reyes
    • 1
  • Alfonso Alba
    • 1
  • Edgar Arce-Santana
    • 1
  1. 1.Facultad de CienciasUniversidad Autónoma de San Luis PotosíSan Luis PotosíMéxico

Personalised recommendations