Advertisement

Vortex Lift at a Very High Angle of Attack with Massively Separated Unsteady Flow

  • Jain-Ming Wu
  • Jie-Zhi Wu
Conference paper
Part of the International Union of Theoretical and Applied Mechanics book series (IUTAM)

Summary

Massive unsteady flow separation is inevitable as the angle of attack increases to a very high level. Very high lift is liard to achieve with todays existing wing configurations. Introducing controlled unsteady flow to modulate natural and disordered unsteadiness can break through this “unsteady separation barrier.” But the control must integrate with novel designs of wing configuration for basic steady flow. Some configurations may work well only after excitation is imposed. Such an integration falls into the general category of vortex control. In this paper, the underlying physics for steady and unsteady vortex controls relevant to high lift are addressed. Requirements for possible basic wing configurations pertinent to unsteady excitations and the recent progress of vortex control by forcing waves are addressed and reviewed. We believe that a certain combination of advanced excitation techniques and special wing configurations that provide a comfortable “seat” for lift-producing vortices and “room” for wave-vortex resonance will bring a new generation of aeronautical flow type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nguyan, L.T.: SAE Paper 89–2235 (1989).Google Scholar
  2. [2]
    Rao, D.M.; Campbell, J.F.: Progr. Aerospace Sci. 24 (1987) 173–244.CrossRefGoogle Scholar
  3. [3]
    Rao, D.M.: AGARD-CP-494 (1991) 25.1–25.12.Google Scholar
  4. [4]
    Lighthill, M.J.: J. Fluid Mech. 60 (1973) 1–17.CrossRefzbMATHGoogle Scholar
  5. [5]
    Hertel, H.: Structure, Form, and Movement. Reinhold Publishing 1966.Google Scholar
  6. [6]
    Wu, J.M.: Intern. Aviation 8 (1988) 2.Google Scholar
  7. [7]
    Wu, J.Z.; Vakili, A.D.; Wu, J.M.: Progr. Aerospace Sci. 28 (1991) 73431.CrossRefGoogle Scholar
  8. [8]
    Maresca, C.; Favier, D.; Robert, J.: J. Fluid Mech. 92 (1979) 671–690.CrossRefGoogle Scholar
  9. [9]
    Gursal, I.; Ho, C.-M.: AIAA.1. 30 (1992) 1117–1119.CrossRefGoogle Scholar
  10. [10]
    Wu, J.Z.; Ma, H.Y.; Zhou, M.D.: Introduction lo Vorticity and Vortex Dynamics. Higher Education Press, 1992.Google Scholar
  11. [11]
    Lighthill, M.J.: In Rosenhead, L. (ed.) Laminar Boundary Layers. Oxford Univ. Press 1963, 46–113.Google Scholar
  12. [12]
    Wu, J.Z.; Wu, J.M.; Wu, C.J.: In Ilasimoto, I1.; Kamble, T. (eds.) Vortex Motion,North-Holland (1988), 203–208.Google Scholar
  13. [13]
    Wu, J.Z.; Wu, J.M.: UTSI Rept. 92/04 (1992).Google Scholar
  14. [14]
    Wu, J.Z.; Wu, J.M.: AIAA Paper 91–0617 (1991).Google Scholar
  15. [15]
    Erickson, G.E.: AFWAL-TR-80–3143 (1981).Google Scholar
  16. [16]
    Greenspan, H.P.: The Theory of Rotating Fluid. Cambridge Univ. Press 1968.Google Scholar
  17. [17]
    Leibovich, S.: AIAA J. 22 (1984) 1192–1206.CrossRefGoogle Scholar
  18. [18]
    Arnold, V.I.: Prikl. Math. Mech. 29 (1965), 846–851.Google Scholar
  19. [19]
    Arnold, V.I.: Izv. Ucheln. Zaved. Math. 54, No. 5 (1966) 3–5.Google Scholar
  20. [20]
    Holm, D.D.; Marsden, J.E.; Ratiu, T.; Weinstein, A.: Phys. Rep. 123 (1985) 1–116.CrossRefzbMATHMathSciNetGoogle Scholar
  21. [21]
    Rouclion, P.: Ear. J. Mech., B/Fluids 10 (1991) 651–661.Google Scholar
  22. [22]
    Serrin, J.: In Flügge, S. (ed.), Ilankbuck der Physik VIII/1 (1959) 125–263.Google Scholar
  23. [23]
    Dritschel, D.G.: J. Fluid Mech. 191 (1988) 575–581.CrossRefzbMATHGoogle Scholar
  24. [24]
    Kloosterziel, R.C.; Carnevale, C.F.: Formal stability of circular vortices, 1992. Submitted for publication.Google Scholar
  25. [25]
    Vallis, G.K.; Carnevale, G.F.; Young, W.R.: J. Fluid Alech. 207 (1989) 133–152.CrossRefzbMATHMathSciNetGoogle Scholar
  26. [26]
    Carnevale, C.F.; Vallis, G.K.: J.Fluid Mech. 213 (1990) 549–571.CrossRefMathSciNetGoogle Scholar
  27. [27]
    Lamb, H.: Hydrodynamics, Dover 1932.Google Scholar
  28. [28]
    Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge Univ. Press 1967.zbMATHGoogle Scholar
  29. [29]
    Gustafson, K.E.: In Gustafson, K.E.; Sethian, J.A. (eds.) Vortex Methods and Vortex Motion. SIAM (1991) 95–141.Google Scholar
  30. [30]
    Ma, H.Y.; Jin, X.: Proc. 5M Chinese Conf. Comp. Fluid Mech., Anhui, China, April 26–29, 1990.Google Scholar
  31. [31]
    Bearman, P.W.: Ann. Rev. Fluid Mech. 16 (1984) 195–222.CrossRefGoogle Scholar
  32. [32]
    Iluerre, P.; Monkewitz, P.A.: Ann. Rev. Fluid Alech. 22 (1990) 473–537.CrossRefGoogle Scholar
  33. [33]
    Oertel, H. Jr.: Ann. Rev. Fluid Alech. 22 (1990) 539–564.CrossRefMathSciNetGoogle Scholar
  34. [34]
    Ito, C.-M.; Iluerre, P.: Ann. Rev. Fluid Mech. 16 (1984) 365–424.CrossRefGoogle Scholar
  35. [35]
    Roos, F.M.; Kegelman, J.T.: AIAA J. 24 (1986) 1956–1963.CrossRefGoogle Scholar
  36. [36]
    Yao, M.F.; Jiang, L.P.; Wu, J.Z.; Ma, H.Y.; Pan, J.Y.; Cai, H.J.: AIAA Paper 89–1000 (1989).Google Scholar
  37. [37]
    Wu, J.Z.; Wu, X.H.; Wu, J.M.: Streaming vorticity flux from oscillating walls with finite amplitude. Submitted for publication (1992).Google Scholar
  38. [38]
    Taneda, S.: J. Phys. Soc. Japan 45 (1978) 1038–1043.CrossRefGoogle Scholar
  39. [39]
    Salfman, P.O.; Sheffield, J.S.: Studies Appl. Math. 57 (1977) 107–117.Google Scholar
  40. [40]
    Wu, J.M.; Wu, J.Z.; Wu, C.J.; Vakili, A.D.: In Miller, J.A.; Telionis, D.P. (eds.) Intern. Symp. Nonsteady Fluid Dyn. SIAM 1990, 357–368.Google Scholar
  41. [41]
    Wu, J.M.; Wu, J.Z.: Eraslan, A.11.; Moore, K.J.: A natural viscous periodic vortex flow over flexible wall with traveling waves. Submitted for publication (1992).Google Scholar
  42. [42]
    Vakili, A.D.; Wu, J.M.; Bhat, M.K.: SAE Paper 881424 (1988).Google Scholar
  43. [43]
    Pan, J.Z.; Mo, J.D.; Wu, J.M.: Acta Aerodyn. Sinica 7 (1988) 344–350.Google Scholar
  44. [44]
    Abuja, K.K.; Burrin, R.H.: AIAA Paper 84–2298 (1984).Google Scholar
  45. [45]
    Wu, X.H.; Wu, J.Z.; Wu, J.M.: AIAA Paper 91–0545 (1991).Google Scholar
  46. [46]
    Wu, X.H.: MS Thesis, UTSI, 1991.Google Scholar
  47. [47]
    Reynolds, W.C.; Carr, L.W.: AIAA Paper 85–0527 (1985).Google Scholar
  48. [48]
    Hou, Y.L.; Lu, Q.Z.: Acta Aerodyn. Sinica 10 (1992) 140–195.Google Scholar
  49. [49]
    Zhou, M.D.: In High Angle of Atlack/Unsteady Flow Phenomena,UTSI Short Course, June 1992.Google Scholar
  50. [50]
    Pan, J.Y.; Pan, X.L.: Acta Aerodyn. Sinica 10 (1992) 135–138.Google Scholar
  51. [51]
    Lessen, M.; Singh, P.J.; Paillet, F.: J. Fluid Mech. 63 (1974) 753–763.CrossRefzbMATHGoogle Scholar
  52. [52]
    Spedding, G.R.; Maxworthy, T.; Rignot, E.: Proc. 2nd AI•’OS’R Workshop on Unsteady and Separated Flows, Colorado Springs, CO, USA, July 1987.Google Scholar
  53. [53]
    Kandil, O.A.; Salman, A.A.: AIAA Paper 91–0435 (1991).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Jain-Ming Wu
    • 1
  • Jie-Zhi Wu
    • 1
  1. 1.The University of Tennessee Space InstituteTullahomaUSA

Personalised recommendations