Advertisement

Bau und Funktion isolierter markhaltiger Nervenfasern

  • Robert Stämpfli
Chapter

Zusammenfassung

Die Erregungsleitung markloser Nervenfasern ist heute sehr weitgehend erforscht. Die einfache Bauart und die Tatsache, daß solche Fasern von der Natur bei gewissen Cephalopoden und Crustaceen in erstaunlicher Dicke ausgebildet werden, haben viel dazu beigetragen, daß man heute nahezu lückenlos über ihre elektrischen Konstanten und die physikalischen Aspekte ihrer Erregungsleitung.orientiert ist, und daß man sich jetzt den sekundären, vorwiegend chemischen Prozessen zuwenden kann, die letzten Endes für die Erhaltung der Erregbarkeit maßgebend sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Adrian, E. D.: The temperature coefficient of the refractory period in nerve. J. of Physiol. 48, 453 (1914).Google Scholar
  2. Adrian, E. D.: The mechanism of nervous action. London 1931.Google Scholar
  3. Adrian, E. D., and D. W. Bronk: The discharge of impulses in motor nerve fibres. Teil I: Impulses in single fibres of the phrenic nerve. J. of Physiol. 66, 81 (1928).Google Scholar
  4. Autrum, H. J., u. D. Schneider: Der Kälteblock der einzelnen markhaltigen Nervenfaser. Naturwiss. 37, 21 (1950a).Google Scholar
  5. Autrum, H. J., u. D. Schneider: Die Blockierung der Erregungsleitung in einzelnen markhaltigen Nervenfasern durch lokalen Druck. Naturwiss. 37, 46 (1950b).Google Scholar
  6. Baud, C.-A.: La texture protofibrillaire du neurite. Acta anat. (Basel) 10, 461 (1950).Google Scholar
  7. Baud, C.-A.: Ultrastructure de la fibre nerveuse en rapport avec sa fonction. Bull. Acad. Sci. Med. Suisse 8 (1952).Google Scholar
  8. Bernard, Claude: Leçons sur la physiologie et la pathologie du système nerveux, Bd. 1, S. 168. Paris 1858.Google Scholar
  9. Bernstein, J.: Elektrobiologie. Braunschweig 1912.Google Scholar
  10. Bethe, A.: Allgemeine Anatomie und Physiologie des Nervensystems. Leipzig 1903.Google Scholar
  11. Bishop, G. H., J. Erlanger and H. S. Gasser: Distortion of action potentials as recorded from the nerve surface. Amer. J. Physiol. 78, 592 (1926).Google Scholar
  12. Blinks, L. R.: The effect of current flow on bioelectrical potential, III. Nitella. J. Gen. Physiol. 20, 229 (1936).Google Scholar
  13. Bonhoeffer, K. F.: Activation of passive iron as a model for the excitation of nerve. J. Gen. Physiol. 32, 69 (1948).PubMedCentralPubMedGoogle Scholar
  14. Bonhoeffer, K. F.: Über das elektromotorische Verhalten von Eisen. Z. Elektrochem. angew. physik. Chem..55, 151 (1951).Google Scholar
  15. Bonhoeffer, K. F., u. U. F. Franck: Über die elektrolytische und die chemische Passivierung und Aktivierung von Eisen. Z. Elektrochem. angew. physik. Chem. 55, 180 (1951).Google Scholar
  16. Bonhoeffer, K. F. u. K. J. Vetter: Zur Aktivierung und Repassivierung von passivem Eisen in Salpetersäure. Z. physik. Chem. 196, 127 (1950).Google Scholar
  17. Booth, J., A. v. Muralt u. R. Stämpfli: The photochemical action of ultra-violet light on isolated single nerve fibres. Helvet. physiol. Acta 8, 110 (1950).Google Scholar
  18. Boyle, P. J., and E. J. Conway: Potassium accumulation in muscle and associated changes. J. of Physiol. 100, 1 (1941).Google Scholar
  19. Bremer, F.: Diskussionsbemerkung zu Huxley u. Stämpfli (1949b). Arch. Sci. physiol. 3, 321 (1949).Google Scholar
  20. Brink, F., D.W. Bronk and M. G. Larrabee: Chemical excitation of nerve. Ann. New York Acad. Sci. 47, 327 (1946).Google Scholar
  21. Cajal, S. R.: Histologie du système nerveux, Bd. 1, S. 269–275. Paris 1909.Google Scholar
  22. Causey, G.: The effect of pressure on nerve-fibre size. J. of Anat. 83, 32 (1949).Google Scholar
  23. Causey, G., and E. Palmer: Early changes in the shape and size of nerve fibres after crushing. J. of Anat. 84, 406 (1950).Google Scholar
  24. Cole, K. S.: Four lectures on biophysics. Rio de Janeiro Instituto de Biofisica da Universidade do Brasil 1947.Google Scholar
  25. Cole, K. S.: Some physical aspects of bioelectrical phenomena. Proc. Nat. Acad. Sci. U.S.A. 35, 558 (1949).Google Scholar
  26. Cole, K. S.: Rectification and induction in the squid giant axon. J. Gen. Physiol. 25, 29 (1941).PubMedCentralPubMedGoogle Scholar
  27. Cole, K. S., and R. F. Baker: Longitudinal impedance of the squid giant axon. J. Gen. Physiol. 24, 771 (1941).PubMedCentralPubMedGoogle Scholar
  28. Cole, K. S., and R. F. Baker, and H. J. Curtis: Electric impedance of nerve and muscle. Cold Spring Harbor Symp. Quant. Biol. 4, 73 (1936).Google Scholar
  29. Cole, K. S., and R. F. Baker, and H. J. Curtis: Electric impedance of Nitella during activity. J. Gen. Physiol. 22, 37 (1938).PubMedCentralPubMedGoogle Scholar
  30. Cole, K. S., and R. F. Baker, and H. J. Curtis: Electric impedance of the squid giant axon during activity. J. Gen. Physiol. 22, 649 (1939).PubMedCentralPubMedGoogle Scholar
  31. Cole, K. S., and R. F. Baker, and H. J. Curtis: Membrane potential of the squid giant axon during current flow. J. Gen. Physiol. 24, 551 (1941).PubMedCentralPubMedGoogle Scholar
  32. Cole, K. S., and R. F. Baker, and H. J. Curtis, and A. L. Hodgkin: Membrane and protoplasm resistance in the squid giant axon. J. Gen. Physiol. 22, 671 (1939).PubMedCentralPubMedGoogle Scholar
  33. Cox, R. T., C. W. Coates and M. V. Brown: Electrical characteristics of electric tissue. Ann. New York Acad. Sci. 47, 487 (1946).Google Scholar
  34. Crescitelli, F.: Nerve sheath as a barrier to the action of certain substances. Amer. J. Physiol. 166, 229 (1951).PubMedGoogle Scholar
  35. Crescitelli, F., and T. A. Geissman: Certain effects of antihistamines and related compounds on frog nerve fibers. Amer. J. Physiol. 164, 509 (1951).PubMedGoogle Scholar
  36. Draper, M. H., and S. Weidmann: Cardiac resting and action potentials recorded with an intracellular electrode. J. of Physiol. 115, 74 (1951).Google Scholar
  37. Engelmann, Th. W.: Vergleichende Untersuchungen zur Lehre von der Muskel- und Nervenelektrizität. Pflügers Arch. 15, 116 (1877).Google Scholar
  38. Engström, A., and H. Lüthy: The distribution of mass and lipoids in the single nerve fiber. Exper. Cell. Res. 1, 143 (1950).Google Scholar
  39. Erlanger, J., and E. A. Blair: The irritability changes in nerve in response to subthreshold induction shocks, and related phenomena, including the relatively refractory phase. Amer. J. Physiol. 99, 108 (1931).Google Scholar
  40. Erlanger, J., and E. A. Blair: Manifestations of segmentation in myelinated axons. Amer. J. Physiol. 110, 287 (1934).Google Scholar
  41. Erlanger, J., and E. A. Blair: Observations on repetitive responses in axons. Amer. J. Physiol. 114, 328 (1935).Google Scholar
  42. Erlanger, J., and E. A. Blair: The action of isotonic, salt-free solutions on conduction in medullated nerve fibres. Amer. J. Physiol. 124, 341 (1938).Google Scholar
  43. Erlanger, J., and E. A. Blair, and H. S. Gasser: Electrical signs of nervous activity. Philadelphia 1937.Google Scholar
  44. Feindel, W. H., and A.C. Allison: Nodes in the central nervous system. Nature (Lond.) 163, 449 (1949).Google Scholar
  45. Feindel, W. H., A. C. Allison, and G. Weddell: Intravenous methylene blue for experimental studies of the central nervous system. J. Neurol. Neurosurg. Psychiat. 11, 227 (1948).PubMedGoogle Scholar
  46. Feindel, W. H., A. C. Allison, and G. Weddell, D. C. Sinclair and G. Weddell: A new method for investigating the nervous system. Brain 70, 495 (1947).PubMedGoogle Scholar
  47. Feng, T. P., and R. W. Gerard: Mechanism of nerve asphyxiation; with a note on the nerve sheath as diffusion barrier. Proc. Soc. Exper. Biol. a. Med. 27, 1073 (1930).Google Scholar
  48. Feng, T. P., and R. W. Gerard, and Y. M. Liu: The connective tissue sheath of nerve as an effective diffusion barrier. J. Cellul. a. Comp. Physiol. 34, 1 (1949).Google Scholar
  49. Fenn, W.O.: Electrolytes in muscle. Physiologic. Rev. 16, 450 (1936).Google Scholar
  50. Fenn, W.O., D.M. Cobb, A. H. Hegnauer and B. S. Marsh: Electrolytes in nerve. Amer. J. Physiol. 110, 74 (1934).Google Scholar
  51. Fernändez-Morän, H.: Electron microscope observations on the structure of the myelinated nerve fiber sheath. Exper. Cell. Res. 1, 143 (1950a).Google Scholar
  52. Fernändez-Morän, H.: Sheath and axon structures in the internode portion of vertebrate myelinated nerve fibers. Exper. Cell. Res. 1, 309 (1950b).Google Scholar
  53. Fernändez-Morän, H.: Diffraction of electrons by structures resembling myelin lamellae. Exper. Cell. Res. 2, 673 (1951).Google Scholar
  54. Fernändez-Morän, H.: The submicroscopic organization of vertebrate nerve fibers as revealed by electron microscopy. Diss. Uppsala 1952.Google Scholar
  55. Fessard, A.: Some basic aspects of the activity of electric plates. Ann. New York Acad. Sci. 47, 501 (1946).Google Scholar
  56. Forbes, A.: Diskussion zu C. C. Speidel. Cold Spring Harbor Symp. Quant. Biol. 4, 13 (1936).Google Scholar
  57. Franck, U. F.: Elektrochemische Modelle zur saltatorischen Nervenleitung. Z. Elektrochem. angew. physik Chem. 55, 535 (1951).Google Scholar
  58. Frankenhäuser, B.: J. of Physiol, im Druck (1952).Google Scholar
  59. Frankenhäuser, B., and D. Schneider: Some electrophysiological observations on isolated single myelinated nerve fibers (saltatory conduction). J. of Physiol. 115, 177 (1951).Google Scholar
  60. Fry, W. J., and R. B. Fry: A possible mechanism involved in the conduction process of thin sheated nerves. J. Cellul. a. Comp. Physiol. 36, 229 (1950).Google Scholar
  61. Fujita, M., and I. Tasaki: Action currents of single nerve fibers as modified by temperature changes. J. of Neurophysiol. 11, 311 (1948).Google Scholar
  62. Gasser, H. S., and H. Grundfest: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A fibers. Amer. J. Physiol. 127, 393 (1939).Google Scholar
  63. Gerard, R. W.: Nerve metabolism. Physiologic. Rev. 12, 469 (1932).Google Scholar
  64. Gray, J. A. B., u. G. Svaetichin: Electrical properties of platinum tipped microelectrodes in Ringers solution. Acta physiol. scand. (Stockh.) 24, 278 (1951).Google Scholar
  65. Guttman, R.: Electrical impedance of muscle at cut and uncut surfaces. J. Cellul. a. Comp. Physiol. 18, 403 (1941).Google Scholar
  66. Harreveld, A. van: The potassium permeability of the myelin sheath of vertebrate nerve. J. Cellul. a. Comp. Physiol. 35, 331 (1950).Google Scholar
  67. Hermann, L.: Beiträge zur Physiologie und Physik des Nerven. Pflügers Arch. 109, 95 (1905).Google Scholar
  68. Hertz, H.: Action potential and diameter of isolated nerve fibres under various conditions. Acta physiol. scand. (Stockh.) 13, Suppl. 43, 1 (1947).Google Scholar
  69. Hess, A., and J. Z. Young: Nodes of Ran vier in the central nervous system. J. of Physiol. 108, 52 P (1949).Google Scholar
  70. Hill, A. V.: Excitation and accommodation in nerve. Proc. Roy. Soc. Lond., Ser. B 119, 305 (1936).Google Scholar
  71. Hill, D. K.: The effect of stimulation on the opacity of a crustacean nerve trunk and its relation to fibre diameter. J. of Physiol. 111, 283 (1950).Google Scholar
  72. Hodgkin, A. L.: Evidence for electrical transmission in nerve. I u. II. J. of Physiol. 90, 183 (1937).Google Scholar
  73. Hodgkin, A. L.: The subtreshold potentials in crustacean nerve fibre. Proc. Roy. Soc. Lond., Ser. B 126, 78 (1938).Google Scholar
  74. Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. Cambridge Philos. Sec. 26, 339 (1951).Google Scholar
  75. Hodgkin, A. L. and A. F. Huxley: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. of Physiol. 116, 449 (1952a).Google Scholar
  76. Hodgkin, A. L. and A. F. Huxley: The components of membrane conductance in the giant axon of Loligo. J. of Physiol. 116, 473 (1952b).Google Scholar
  77. Hodgkin, A. L. and A. F. Huxley: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. of Physiol. 116, 497 (1952c).Google Scholar
  78. Hodgkin, A. L. and A. F. Huxley and B. Katz: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. Physiol. 3, 129 (1949).Google Scholar
  79. Hodgkin, A. L. and A. F. Huxley: Measurement of current-voltage relations in the membrane of the giant axon Loligo. J. of Physiol. 116, 424 (1952).Google Scholar
  80. Hodgkin, A. L. and A. F. Huxley and B. Katz: The effect of sodium ions of the electrical activity of the giant axon of the squid. J. of Physiol. 108, 37 (1949).Google Scholar
  81. Hodler, J., R. Stämpfli u. I. Tasaki: Über die Wirkung internodaler Abkühlung auf die Erregungsleitung in der isolierten markhaltigen Nervenfaser des Frosches. Pflügers Arch. 253, 380 (1951).PubMedGoogle Scholar
  82. Hodler, J., R. Stämpfli u. I. Tasaki: The rôle of the potential wave spreading along the myelinated nerve fiber/in excitation and conduction. Amer. J. Physiol, im Druck (1952).Google Scholar
  83. Höber, R.: Lehrbuch der Physiologie des Menschen. Bern 1939.Google Scholar
  84. Hutton-Rudolph, M.: Photochemische Versuche an einzelnen Nervenfasern. Diss. Hallerianum Bern 1944.Google Scholar
  85. Huxley, A. F.: Demonstration vor der Physiological Society of Great Britain 1948.Google Scholar
  86. Huxley, A. F., u. R. Stämpfli: Beweis der saltatorischen Erregungsleitung im markhaltigen peripheren Nerven. Hèlvet. physiol. Acta 6, C 22 (1948).Google Scholar
  87. Huxley, A. F.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. of Physiol. 108, 315 (1949a).Google Scholar
  88. Huxley, A. F.: Saltatory transmission of the nervous impulse. Arch. Sei. Physiol. 3, 435 (1949b).Google Scholar
  89. Huxley, A. F.: Direkte Bestimmung des Membranpotentials der markhaltigen Nervenfaser in Ruhe und Erregung. Helvet. physiol. Acta 8, 107 (1950).Google Scholar
  90. Huxley, A. F.: Direct determination of membrane resting potential and action potential in single myelinated nerve fibres. J. of Physiol. 112, 476 (1951a).Google Scholar
  91. Huxley, A. F.: Effect of potassium and sodium on resting and action potential of single myelinated nerve fibres. J. of Physiol. 112, 496 (1951b).Google Scholar
  92. Kano, H., and I. Tasaki: Isolation of cutaneous and muscular afferent fibers. Proc. Jap. Physiol. Soc. 21. Verslg. Jap. J. Med. Sci. 9, No 2 (1942).Google Scholar
  93. Kato, G.: Microphysiology of nerve. Tokyo 1934.Google Scholar
  94. Kato, G.: On the excitation, conduction and narcotisation of single nerve fibres. Cold Spring Harbor Symp. Quant. Biol. 4, 202 (1936).Google Scholar
  95. Kato, G.: Neuere Untersuchungen an einzelnen Nervenfasern. Abh. exakt. Biol. 1941, H. 2, 121.Google Scholar
  96. Katz, B.: Experimental evidence for a non-conducted response of nerve to subthreshold stimulation. Proc. Roy. Soc. Lond., Ser. B 124, 244 (1937).Google Scholar
  97. Katz, B.: Electric excitation of nerve. Oxford 1939.Google Scholar
  98. Katz, B.: Impedance changes in frog’s muscle associated with electrotonic and „endplate“ potentials. J. of Neurophysiol. 5, I69 (1942).Google Scholar
  99. Key, A., u. G. Retzius: Studien in der Anatomie des Nervensystems und des Bindegewebes, Bd. 2, S. 102. Stockholm: Samson u. Wallin 1876.Google Scholar
  100. Kölliker, A.: Handbuch der Gewebelehre des Menschen, Bd. 2, S. 4. Leipzig 1896.Google Scholar
  101. Kornmüller, A. E.: Die Elemente der nervösen Tätigkeit. Stuttgart 1947.Google Scholar
  102. Kubo, M., u. Ono (1934): Zit. nach Kato 1941.Google Scholar
  103. Kuffler, S. W.: A second motor nerve system to frog skeletal muscle. Proc. Soc. Exper. Biol. a. Med. 63, 21 (1946).Google Scholar
  104. Kuffler, S. W., and R. W. Gerard: The small-nerve motor system to skeletal muscle. J. of Neurophysiol. 10, 383 (1947).Google Scholar
  105. Kuffler, S. W., Y. Laporte and R. E. Ransmeier: The function of the frog’s small-nerve motor system. J. of Neurophysiol. 10, 395 (1947).Google Scholar
  106. Kuffler, S. W., Y. Laporte and R. E. Ransmeier: Reflex activity of the frog’s small-nerve motor system. Federat. Proc. 6, No 1 (1947).Google Scholar
  107. Laporte, Y.: Conduction continue dans les fibres nerveuses myélinées périphériques. Abstr. 18. Internat. Physiol.-Congr., 1950, S. 327.Google Scholar
  108. Laporte, Y.: De la conduction continue dans les fibres nerveuses myélinisées périphériques. J. Physiol, et Path. gén. 42, 463 (1950b).Google Scholar
  109. Laporte, Y.: Continuous conduction of impulses in peripheral myelinated nerve fibers. J. Gen. Physiol. 35, 343 (1951).PubMedCentralPubMedGoogle Scholar
  110. Lehmann, H. J.: Das quantitative Verhalten der Nervensegmente und die Theorie der saltatorischen Erregungsleitung. Z. Zellforsch. 36, 273 (1951).PubMedGoogle Scholar
  111. Lillie, R. S.: Protoplasmic action and nervous action. Chicago: University Press 1923.Google Scholar
  112. Lillie, R. S.: Factors affecting transmission and recovery in the passive iron nerve model. J. Gen. Physiol. 7, 473 (1925).PubMedCentralPubMedGoogle Scholar
  113. Ling, G., and R. W. Gerard: The normal membrane potential of frog sartorius fibres. J. Cellul. a. Comp. Physiol. 34, 382 (1949).Google Scholar
  114. Lloyd, D. P., and Hsiang-Tung Chang: Afferent fibers in muscle nerves. J. of Neurophysiol. 11, 199 (1948).Google Scholar
  115. Lorente de Nó, R.: A study of nerve physiology. I u. II. Stud. Rockefeller Inst. 131 u. 132 (1947).Google Scholar
  116. Lorente de Nó, R.: On the effect of certain quaternary ammonium ions upon frog nerve. J. Cellul. a. Comp. Physiol. 33, Suppl. 1 (1949).Google Scholar
  117. Lorente de , R.: The ineffectiveness of the connective tissue sheath of nerve as a diffusion barrier. J. Cellul. a. Comp. Physiol. 35, 195 (1950).Google Scholar
  118. Lüthy, H.: Optische Interpretation der Quermembran im Ranvierschen Schnürring. Experientia (Basel) 6, 381 (1950).Google Scholar
  119. Lüthy, H.: Absorptionsspektrophotometrie markloser und markhaltiger Nervenfasern im natürlichen und polarisierten ultravioletten Licht. Pflügers Arch. 253, 477 (1951).PubMedGoogle Scholar
  120. Lullies, H.: Über die Polarisation in Geweben. III. Mitteilung. Die Polarisation im Nerven. IL Pflügers Arch. 225, 87 (1930).Google Scholar
  121. Marmont, G.: Studies on the axon membrane. I. A new method. J. Cellul. a. Comp. Physiol. 34, 351 (1949).Google Scholar
  122. Monnier, A. M.: Les bases physico-chimiques de l’action du calcium sur l’activité nerveuse. Arch. Sci. Physiol. 3, 55 (1949).Google Scholar
  123. Monnier, A. M., et G. Coppée: Nouvelles recherches sur la résonance des tissus excitables. I. Relations entre la rythmicité de la réponse nerveuse et la résonance. Arch, internat. Physiol. 48, 129 (1939).Google Scholar
  124. Mullins, L. J.: Uptake of phosphate by frog axons. Federat. Proc. 9, 93 (1950).Google Scholar
  125. Muralt, A. v.: Zusammenhänge zwischen physikalischen und chemischen Vorgängen bei der Muskelkontraktion. Erg. Physiol. 37, 406 (1935).Google Scholar
  126. Muralt, A. v.: Polarographischer und optischer Nachweis des Austrittes von Aktionssubstanzen aus einem künstlichen Nervenquerschnitt. Helvet. physiol. Acta 1, C 20 (1943).Google Scholar
  127. Muralt, A. v.: Die Signalübermittlung im Nerven. Basel 1946.Google Scholar
  128. Muralt, A. v.: The submicroscopic structure of the peripheral nerve. Proc. 6. Internat. Congr. Exper. Cytology 1947 a.Google Scholar
  129. Muralt, A. v.: Über die Bedeutung der Quermembran des markhaltigen Nerven für die saltatorische Fortpflanzung der Erregungswelle. Helvet. physiol. Acta 5, C45 (1947b).Google Scholar
  130. Muralt, A. v.: Photochemische Versuche an einzelnen Nervenfasern. Bull. Schweiz. Akad. med. Wiss. 6, 205 (1950).Google Scholar
  131. Nastuk, W. L., and A. L. Hodgkin: The electrical activity of single muscle fibres. J. Cellul. a. Comp. Physiol. 35, 39 (1950).Google Scholar
  132. Nauck, E. Th.: Bemerkungen über den mechanisch-funktionellen Bau des Nerven. Anat. Anz. (Erg.-H.) 72, 260 (1931).Google Scholar
  133. Parrack, H. O.: Excitability of the excised and circulated frog’s sciatic nerve. Amer. J. Physiol. 130, 481 (1940).Google Scholar
  134. Pfaffmann, C.: Potentials in the isolated medullated axon. J. Cellul. a. Comp. Physiol. 16, 407 (1940).Google Scholar
  135. Pflüger, E.: Physiologie des Elektrotonus. Berlin 1859.Google Scholar
  136. Pumphrey, R. J., and J. Z. Young: The rates of conduction of nerve fibres of various diameters in cephalopods. J. of exper. Biol. 15, 453 (1938).Google Scholar
  137. Ranvier, L.: Traité technique d’histologie. Paris 1875.Google Scholar
  138. Rashbass, C, and W. A. H. Rushton: The relation of structure to the spread of excitation in the frog’s sciatic trunk. J. of Physiol. 110, 110 (1949).Google Scholar
  139. Rein, H.: Physiologie des Menschen. Berlin 1947.Google Scholar
  140. Rexed, B., and, P. Therman: Caliber spectra of motor and sensory nerve fibres to flexor and extensor muscles. J. of Neurophysiol. 11, 133 (1948).Google Scholar
  141. Rice, L. H., and H. Davis: Uniformity of narcosis in peripheral nerve. Amer. J. Physiol. 87, 73 (1928).Google Scholar
  142. Ritter, I. W.: Beiträge zur näheren Kenntnis des Galvanismus, Bd. 2. Jena 1802. Zit. bei E. Pflüger, Physiologie des Elektrotonus. Berlin 1859.Google Scholar
  143. Robertis, E. de, and F. O. Schmitt: An electron microscope analysis of certain nerve axon constituents. J. Cellul. a. Comp. Physiol. 31, 1 (1948).Google Scholar
  144. Rössel, W.: Der Einfluß der Nervenhüllen auf die elektrolytische Polarisation und die Erregbarkeit des Frosch-Ischiadicus. Pflügers Arch. 246, 543 (1943).Google Scholar
  145. Rosenblueth, A., N. Wiener, W. Pitts and J. Garcia Ramos: An account of the spike potential of axons. J. Cellul. a. Comp. Physiol. 32, 275 (1948).Google Scholar
  146. Rozsa, G., C. Morgan, A. Szent-Györgyi and R. W. G. Wyckoff: The electron microscopy of myelinated nerve. Biochim. et Biophysica Acta 6, 13 (1950a).Google Scholar
  147. Rozsa, G., C. Morgan, A. Szent-Györgyi and R. W. G. Wyckoff: The electron microscopy of sectioned nerve. Science 112, 42 (1950).PubMedGoogle Scholar
  148. Rushton, W. A. H.: Excitation of bent nerve. J. of Physiol. 65, 173 (1928).Google Scholar
  149. Rushton, W. A. H.: Initiation of the propagated disturbance. Proc. Roy. Soc. Lond., Ser. B 124, 210 (1937).Google Scholar
  150. Rushton, W. A. H.: A theory of the effects of fibre size in medullated nerve. J. of Physiol. 115, 101 (1951).Google Scholar
  151. Sakamoto, S.: Elektrische Reizung einer einzelnen motorischen Nervenfaser durch Gleichspannung. Pflügers Arch. 231, 489 (1933).Google Scholar
  152. Sanders, F. K., and D. Whitteridge: Conduction velocity and myelin thickness in regenerating nerve fibres. J. of Physiol. 105, 152 (1946).Google Scholar
  153. Sato, M.: Comparative measurements of accommodation in two nerve fibers of different sizes. Jap. J. Physiol. 1, 309 (1951).Google Scholar
  154. Sato, M., M. Nadao, Ch. Terauchi, T. Yamanaka and M. Matsumoto: The accommodation curves of nerve and nerve fiber, with special reference to the,,breakdown of accommodation“, and the effects of Veratrine, Guanidine and Aconitine upon them. Jap. J. Physiol. 1, 255 (1951).Google Scholar
  155. Sato, M., and J. Usiyama: On the relation of strength-frequency curve in excitation by low frequency A. C. to the minimal gradient of the nerve fiber. Jap. J. Physiol. 1, 141 (1950).Google Scholar
  156. Sjöstrand, F.: An electron microscope study of the retinal rods of the guinea pig eye. J: Cellul. a. Comp. Physiol. 33, 383 (1949).Google Scholar
  157. Sjöstrand, F.: Electron-microscopic demonstration of a membrane structure isolated from nerve tissue. Nature (Lond.) 165, 482 (1950).Google Scholar
  158. Sjöstrand, F.: A method for making ultra-thin tissue sections for electron microscopy at high resolution. Nature (Lond.) 168, 646 (1951).Google Scholar
  159. Schmitt, F. O.: The ultrastructure of the nerve myelin sheath. Multiple sclerosis and the demyelinating diseases. 28, 247 (1950a).Google Scholar
  160. Schmitt, F. O.: The structure of the axon filaments of the giant nerve fibers of Loligo and Myxicola. J. of Exper. Zool. 113, 499 (1950b).Google Scholar
  161. Schmitt, F. O., and B. B. Geren: The fibrous structure of the nerve axon in relation to the localization of „neurotubules“. J. of Exper. Med. 91, 499 (1950).Google Scholar
  162. Schmitz, W., u. H. Schäfer: Zum Nachweis der Polarisationskapazität am Nerven. Pflügers Arch. 232, 20 (1933).Google Scholar
  163. Schneider, D.: Die lokale Reizung und Blockierung im Internodium der isolierten markhaltigen Nervenfaser des Frosches. Z. vergl. Physiol. 32, 507 (1950).Google Scholar
  164. Schneider, D.: Die Dehnbarkeit der markhaltigen Nervenfaser des Frosches in Abhängigkeit von Funktion und Struktur. Z. Naturforsch. 7b, 38 (1952).Google Scholar
  165. Schoepfle, G. M., and J. Erlanger: The action of temperature on the excitability, spike height and configuration and the refractory period observed in the responses of single medullated nerve fibers. Amer. J. Physiol. 134, 694 (1941).Google Scholar
  166. Schriever, H.: Über Einschleichen von Strom. Z.Biol. 93, 123 (1932).Google Scholar
  167. Schriever, H., u. R. Cebulla: Über die Erregbarkeitsänderung des Nerven beim Übergang von 1 nicht-rhythmischer zu rhythmischer Reizbeantwortung. Pflügers Arch. 241, 1 (1938).Google Scholar
  168. Stämpfli, R.: Untersuchungen an der einzelnen lebenden Nervenfaser des Froschs. Helvet. physiol. Acta 4, 411 (1946).Google Scholar
  169. Stämpfli, R.: La segmentation de la fibre nerveuse myélinisée. J. de Physiol. 40, 313 A (1948).Google Scholar
  170. Stämpfli, R., u. Y. Zottermann: Nachweis der saltatorischen Erregungsleitung am intakten Nervenstamm. Helvet. physiol. Acta 9, 208 (1951).Google Scholar
  171. Svaetichin, G.: A combination of microscopes and micro-manipulators for electrophysiological investigations on single nerve cells. Acta physiol. scand. (Stockh.) 24, Suppl. 86 (1951).Google Scholar
  172. Svaetichin, G.: Low resistance micro-electrodes. Acta physiol. scand. (Stockh.) 24, Suppl. 86 (1951).Google Scholar
  173. Takeuchi, T., u. I. Tasaki: Übertragung des Nervenimpulses in der polarisierten Nervenfaser. Pflügers Arch. 246, 32 (1942).Google Scholar
  174. Tasaki, I.: The strength-duration relation of the normal polarized and narcotized nerve fiber. Amer. J. Physiol. 125, 367 (1939a).Google Scholar
  175. Tasaki, I.: Electric stimulation and the excitatory process in the nerve fiber. Amer. J. Physiol. 125, 380 (1939b).Google Scholar
  176. Tasaki, I.: The electro-saltatory transmission of the nerve impulse and the effect of narcosis upon the nerve fiber. Amer. J. Physiol. 127, 211 (1939c).Google Scholar
  177. Tasaki, I.: Mikrophysiologische Untersuchung über die Grundlage der Erregungsleitung, in der markhaltigen Nervenfaser. Pflügers Arch. 244, 125 (1940).Google Scholar
  178. Tasaki, I.: Das Schwellenabsinken bei Reizung einer Nervenfaser mit kurzen Stromstößen. Pflügers Arch. 245, 665 (1942).Google Scholar
  179. Tasaki, I.: Collision of two nerve impulses in the nerve fibre. Biochim. et Biophysica Acta 3, 494 (1949a).Google Scholar
  180. Tasaki, I.: The excitatory and recovery processes in the nerve fibre as modified by temperature changes. Biochim. et Biophysica Acta 3, 498 (1949b).Google Scholar
  181. Tasaki, I.: Electrical excitation of the nerve fiber. Teil I. Excitation by linearly increasing currents. Jap. J. Physiol. 1, 1 (1950a).Google Scholar
  182. Tasaki, I.: Nature of the local excitatory state in the nerve fiber. Jap. J. Physiol. 1, 75 (1950b).Google Scholar
  183. Tasaki, I.: The threshold conditions in electrical excitation of the nerve fiber. Teil I. Cytologia 15, 205 (1950c).Google Scholar
  184. Tasaki, I.: The threshold conditions in electrical excitation of the nerve fiber. Teil II. Cytologia 15, 219 (1950d).Google Scholar
  185. Tasaki, I., and M. Fujita: Action currents of single nerve fibers as modified by temperature changes. J. of Neurophysiol. 11, 311 (1948).Google Scholar
  186. Tasaki, I., K. Ishii and H. Ito: On the relation between the conduction-rate, the fibre-diameter and the internodal distance of the medullated nerve fibre. Jap. J. Med. Sci. 9, 189 (1943).Google Scholar
  187. Tasaki, I., K. Ishii and H. Ito, and H. Kano: Isolation of slow motor fiber. Proc. Jap. Physiol. Soc. 21. Verslg. Jap. J. Med. Sei., Trans. Biophysics 9, No 2 (1942).Google Scholar
  188. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi: Response of single Ranvier nodes to electrical stimuli. J. of Neurophysiol. 11, 295 (1948).Google Scholar
  189. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi: The changes in the electric impedance during activity and the effect of alkaloids and polarisation upon bioelectric processes in the myelinated nerve fibre. Biochim. et Biophysica Acta 3, 484 (1949).Google Scholar
  190. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi and K. Tasaki: Modification of the electric response of a single Ranvier node by narcosis, refractoriness and polarisation. J. of Neurophysiol. 11, 305 (1948).Google Scholar
  191. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi, and K. Mizutani: Comparative studies on the activities of the muscle evoked by two kinds of motor nerve fibres. Teil I. Myographie studies. Jap. J. Med. Sci., Trans. Biophysics 10, 237 (1944).Google Scholar
  192. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi, and M. Sakaguchi: Electrical excitation of the nerve fiber. Teil IL Excitation by exponentially increasing currents. Jap. J. Physiol. 1, 7 (1950).Google Scholar
  193. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi, and M. Sato: On the relation of the strength-frequency curve in excitation by alternating current to the strength-duration and latent addition curves of the nerve fiber. J. Gen. Physiol. 34, 373 (1951).PubMedCentralPubMedGoogle Scholar
  194. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi, u. T. Takeuchi: Der am RANViERschen Knoten entstehende Aktionsstrom und seine Bedeutung für die Erregungsleitung. Pflügers Arch. 244, 696 (1941).Google Scholar
  195. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi: Weitere Studien über den Aktionsstrom der markhaltigen Nervenfaser und über die elektrosaltatorische Übertragung des Nervenimpulses. Pflügers Arch. 245, 764 (1942).Google Scholar
  196. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi, and M. Tsukagoshi: Comparative studies on the activities of the muscle evoked by two kinds of motor nerve fibres. Teil II. Electromyogram. Jap. J. Med. Sci., Trans. Biophysics 10, 245 (1944).Google Scholar
  197. Tasaki, I., K. Ishii and H. Ito, and K. Mizuguchi, u. J. Ushiyama: Über den Effekt von Saponin und anderen Chemikalien auf die Erregungsleitung der einzelnen markhaltigen Nervenfaser. Helvet. physiol. Acta 8, C77 (1950).Google Scholar
  198. Tasaki, N., and I. Tasaki: The electrical field which a transmitting nerve fiber produces in the fluid medium. Biochimica et Biophysica Acta 5, 335 (1950).PubMedGoogle Scholar
  199. Thomas, P. K., and J. Z. Young: Internode lengths in the nerves of fishes. J. of Anat. 83, 336 (1949).Google Scholar
  200. Tobias, J. M.: Qualitative observations on visible changes in single frog, squid and other axones subjected to electrical polarization. Implications for excitation and conduction. J. Cellul. a. Comp. Physiol. 37, 91 (1951).Google Scholar
  201. Tobias, J. M., and S. Solomon: Opacity and diameter changes in polarized nerve. J. Cellul. a. Comp. Physiol. 35, 25 (1950).Google Scholar
  202. Tsunematsu: Zit. in I. Tasaki, Pflügers Arch. 245, 665 (1942).Google Scholar
  203. Valentin, G.: Die Zuckungsgesetze des lebenden Nerven und Muskels. Leipzig u. Heidelberg: Winter 1863.Google Scholar
  204. Vizoso, A. D., and J. Z. Young: Internode length and fibre diameter in developing and regenerating nerves. J. of Anat. 82, 110 (1948).Google Scholar
  205. Weidmann, S.: Ein schnell registrierender Polarograph. Inaug.-Diss. Bern 1947.Google Scholar
  206. Weidmann, S.: Initiation of break response in Nitella. Acta physiol. scand. (Stockh.) 19, 230 (1949).Google Scholar
  207. Weiss, P.: Damming of axoplasm in constricted nerve: a sign of perpetual growth in nerve fibers. Anat. Rec. 88, 464 (1944).Google Scholar
  208. Weiss, P., and H. B. Hiscoe: Experiments on the mechanism of nerve growth. J. of Exper. Zool. 107, 315 (1949).Google Scholar
  209. Woodbury, J. W., and L. A. Woodbury: Membrane resting and action potentials from excitable tissues. Federat. Proc. 9, 139 (1950).Google Scholar
  210. Woodbury, L. A., J. W. Woodbury and H. H. Hecht: Membrane resting and action potentials of single cardiac muscle fibres. Circulation 1, 264 (1950).PubMedGoogle Scholar
  211. Yamagiwa, K.: The active area in course of excitation conduction (observations on Lillies nerve model). Jap. Med. J. 1, 439 (1948a).Google Scholar
  212. Yamagiwa, K.: Interactions between active elements. Jap. Med. J. 1, 557 (1948b).Google Scholar
  213. Yamagiwa, K.: A model for the synapse (Lillies nerve model modified). Jap. Med. J. 2, 38 (1949a).Google Scholar
  214. Yamagiwa, K.: A special case of interaction (further observations on Lillies nerve model). Jap. Med. J. 2, 93 (1949b).Google Scholar
  215. Yamagiwa, K.: The conduction velocity in relation to the stimulation intensity and to the size of the activated area (observations on Lillies nerve model). Jap. Med. J. 2, 217 (1949c).Google Scholar
  216. Yamagiwa, K.: The interactions in various manifestations (observations on Lillies nerve model). Teil I. The accelerating action. Jap. J. Physiol. 1, 40 (1951a).Google Scholar
  217. Yamagiwa, K.: The interaction in various manifestations (observations on Lillies nerve model). Teil IL The effects on the distance travelled and the refractory period. Jap. J. Physiol. 1, 48 (1951b).Google Scholar
  218. Yamagiwa, K.: Facilitation and inhibition, model experiments and a new hypothesis. Jap. J. Physiol. 1, 195 (1951c).Google Scholar
  219. Young, J. Z.: Narrowing of nerve fibres at the nodes of Ranvier. J. of Anat. 83, 55 (1949).Google Scholar
  220. Young, J. Z., A. D. Vizoso and P. H. Shepherd: The structure, spacing and significance of the nodes of Ranvier. 17. internat. Physiol.-Congr. Oxford 1947, S. 103.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1952

Authors and Affiliations

  • Robert Stämpfli
    • 1
  1. 1.Physiologisches Institut der Universität (Hallerianum)BernSchweiz

Personalised recommendations