Linear Equations

  • Wolfgang Kinzel
  • Georg Reents


Many phenomena in physics can be described by linear equations. In these cases, twice the cause results in twice the effect; this fact allows for a mathematical solution to such problems. Linear systems can frequently be described by vectors, which have sometimes a few, and sometimes a large number of components. In the equations of motion, matrices then appear, whose eigenvalues and eigenvectors describe the energies and the stationary states of the system. Every other form of motion is a superposition of these eigenstates.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Schwabl F. (1995) Quantum Mechanics. Springer, Berlin, Heidelberg, New YorkCrossRefzbMATHGoogle Scholar
  2. Crandall R.E. (1991) Mathematica for the Sciences. Addison-Wesley, Redwood City, CAGoogle Scholar
  3. Goldstein H. (1980) Classical Mechanics. Addison-Wesley, Reading, MAzbMATHGoogle Scholar
  4. Kittel C. ( 1996 ) Introduction to Solid State Physics. Wiley, New YorkGoogle Scholar
  5. Hofstadter D.R. (1976) Energy Levels and Wave Functions of Bloch Electrons in Rational and Irrational Magnetic Fields. Phys. Rev. B 14: 2239ADSCrossRefGoogle Scholar
  6. Stoer J., Bulirsch R. (1996) Introduction to Numerical Analysis. Springer, Berlin, Heidelberg, New YorkGoogle Scholar
  7. Hirsch J.E. (1985) Two-dimensional Hubbard Model: Numerical Simulation Study. Phys. Rev. B 31: 4403ADSCrossRefGoogle Scholar
  8. Lin H.Q., Gubernatis J.E. (1993) Exact Diagonalization Methods for Quantum Systems. Computers in Physics 7: 400ADSCrossRefGoogle Scholar
  9. Montorsi A. (Ed.) (1992) The Hubbard Model: A Reprint Volume. World Scientific, SingaporeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Wolfgang Kinzel
    • 1
  • Georg Reents
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgDeutschland

Personalised recommendations