Advertisement

Functions in Mathematica

  • Wolfgang Kinzel
  • Georg Reents
Chapter

Abstract

At the lowest hierarchical level of programming languages, any computer processes small packets of on-off data (bits) step by step. Every packet gives instructions to electronic switches that cause the results of elementary mathematical operations to be written to memory and new data to be read. This level of processing elementary instructions step by step, however, is hardly suited to the formulation of more involved problems by humans.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. Kernighan B.W., Ritchie D.M. (1988) The C Programming Language. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  2. Wolfram S. (1996) The Mathematica Book, 3rd ed. Wolfram Media, Champaign, IL, and Cambridge University Press, CambridgezbMATHGoogle Scholar
  3. Baumann G. (1996) Mathematica in Theoretical Physics: Selected Examples from Classical Mechanics to Fractals. TELOS, Santa Clara, CAzbMATHGoogle Scholar
  4. Crandall R.E. (1991) Mathematica for the Sciences. Addison-Wesley, Redwood City, CAGoogle Scholar
  5. Zimmerman R.L., Olness F.I., Wolpert D. (1995) Mathematica for Physics. Addison-Wesley, Reading, MAGoogle Scholar
  6. Crandall R. E. (1991) Mathematica for the Sciences. Addison-Wesley, Redwood City, CAGoogle Scholar
  7. Press W.H., Teukolsky S.A.,Vetterling W.T., Flannery B.P. (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  8. DeVries P.L. (1994) A First Course in Computational Physics. Wiley, New YorkGoogle Scholar
  9. Wolfram S. (1996) The Mathematica Book, 3rd ed. Wolfram Media, Champaign IL, and Cambridge University Press, CambridgeGoogle Scholar
  10. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P. (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  11. Wolfram S. (1996) The Mathematica Book, 3rd ed. Wolfram Media, Champaign, IL, and Cambridge University Press, CambridgeGoogle Scholar
  12. Bevington P.R., Robinson D.K. (1992) Data Reduction and Error Analysis for the Physical Sciences. McGraw-Hill, New YorkGoogle Scholar
  13. Honerkamp J. (1994) Stochastic Dynamical Systems: Concepts, Numerical Methods, Data Analysis. VCH, Weinheim, New YorkGoogle Scholar
  14. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  15. Wolfram S. (1996) The Mathematica Book, 3rd ed. Wolfram Media, Champaign, IL, and Cambridge University Press, CambridgeGoogle Scholar
  16. Gradshteyn I.S., Ryzhik I.M. (1994) Table of Integrals, Series, and Products. Academic Press, Boston, MAzbMATHGoogle Scholar
  17. Jackson J.D. (1975) Classical Electrodynamics. Wiley, New YorkzbMATHGoogle Scholar
  18. Smith C., Blachman N. (1995) The Mathematica Graphics Guidebook. Addison-Wesley, Reading, MAGoogle Scholar
  19. Wickham-Jones T. (1994) Mathematica Graphics: Techniques & Applications. TELOS, Santa Clara, CACrossRefzbMATHGoogle Scholar
  20. Dennery P., Krzywicki A. (1996) Mathematics for Physicists. Dover Publications, Mineola, NYzbMATHGoogle Scholar
  21. Boltzmann L. (1898) Vorlesungen über Gastheorie. Barth, Leipzig [English transl. ( 1995 ) Lectures on Gas Theory. Dover, New York]Google Scholar
  22. Reif F. (1965) Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New YorkGoogle Scholar
  23. Schmid E.W., Spitz G., Lösch W. (1990) Theoretical Physics on the Personal Computer. Springer, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  24. von Neumann J. (1928) Zur Theorie der Gesellschaftsspiele. Ann. Math. 100:295 [English transl.: Bargmann S. (1959) On the Theory of Games of Strategy. In: Luce R.D., Tucker A.W. (eds.) Contributions to the Theory of Games IV. Princeton University Press, Princeton, NJ, 13–42]CrossRefzbMATHGoogle Scholar
  25. Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P. (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, New YorkGoogle Scholar
  26. Panik M.J. (1996) Linear Programming: Mathematics, Theory and Algorithms. Kluwer Academic, Dordrecht, New YorkCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Wolfgang Kinzel
    • 1
  • Georg Reents
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WürzburgWürzburgDeutschland

Personalised recommendations