Real Parameter Optimization Using Levy Distributed Differential Evolution

  • Nanda Dulal Jana
  • Aditya Narayn Hati
  • Rajkumar Darbar
  • Jaya Sil
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Differential Evolution (DE) algorithm is a real parameter encoded evolutionary algorithm for global optimization. In this paper, Levy distributed DE (LevyDE) has been proposed. The main objective of LevyDE algorithm is to introduce a parameter control mechanism in DE based on levy distribution, a heavy tail distribution, for both the mutation and crossover operations. The main emphasis of this paper is to analyze the behavior and dynamics of the LevyDE and make a comparison with other standard algorithms such as DE/best/1/bin [1], DE/rand/1/bin [1] and ACDE [8] on basis of CEC’05 benchmark functions.

Keywords

Differential Evolution Differential Evolution Algorithm Benchmark Function Mutation Strategy Heavy Tail Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach to Global optimization. Springer (2005)Google Scholar
  2. 2.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC05 special session on real-parameter optimization. Technical Report, Nanyang Teechnological University, Singapore (May 2005)Google Scholar
  3. 3.
    Epitropakis, M.G., Plagianakos, V.P., Vrahatis, M.N.: Balancing the exploration and exploitation capabilities of the Differential Evolution algorithm. In: Proceedings of 2008 IEEE Congress on Evolutionary Computation (CEC 2008), pp. 2686–2693 (2008)Google Scholar
  4. 4.
    Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Transaction on Evolutionary Computation 3(2), 124–141 (1999)CrossRefGoogle Scholar
  5. 5.
    Krink, T., Filipič, B., Fogel, G.B.: Noisy optimization problems: A particular challenge for differential evolution. In: Proc. IEEE Congr. Evol. Comput., pp. 332–339 (2004)Google Scholar
  6. 6.
    Liu, B., Zhang, X., Ma, H.: Hybrid differential evolution for noisy optimization. In: Proc. IEEE Congr. Evol. Comput., pp. 587–592 (June 2008)Google Scholar
  7. 7.
    Liu, J., Lampinen, J.: A fuzzy adaptive differential evolution algorithm. Soft Comput. 2005 9(6), 448–462 (2005)MATHGoogle Scholar
  8. 8.
    Thangaraj, R., Pant, M., Abraham, A.: A Simple Adaptive Differential Evolution Algorithm. In: Proc. NaBIC 2009, pp. 457–462 (2009)Google Scholar
  9. 9.
    Teo, J.: Exploring Dynamic Self-adaptive Populations in Differential Evolution. Soft Computing - A Fusion of Foundations’ Methodologies and Applications 10(8), 673–686 (2006)Google Scholar
  10. 10.
    Yang, Z., Yao, K.T.X.: Self-adaptive Differential Evolution with Neighborhood Search. In: IEEE World Congress on Computational Intelligence, pp. 1110–1116 (2008)Google Scholar
  11. 11.
    Qin, A.K., Suganthan, P.N.: Self-adaptive Differential Evolution Algorithm for Numerical Optimization. In: Proc. IEEE Congress on Evolutionary Computation (September 2005)Google Scholar
  12. 12.
    Applebaum, D.: Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes, pp. 37–53. University of SheffieldGoogle Scholar
  13. 13.
    Pant, M., Thangaraj, R., Abraham, A., Grosan, C.: Differential Evolution with Laplace Mutation Operator. In: CEC 2009, pp. 2841–2849 (2009)Google Scholar
  14. 14.
    Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Proc. of 2002 Congress on Evolutionary Computation, pp. 831–836 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nanda Dulal Jana
    • 1
  • Aditya Narayn Hati
    • 1
  • Rajkumar Darbar
    • 2
  • Jaya Sil
    • 3
  1. 1.Dept of Information TechnologyNIT DurgapurDurgapurIndia
  2. 2.School of Information TechnologyIIT KharagpurKharagpurIndia
  3. 3.Dept of Computer Science & EngineeringBESUShibpurIndia

Personalised recommendations