Content Based Image Retrieval of T2 Weighted Brain MR Images Similar to T1 Weighted Images

  • Abraham Varghese
  • Kannan Balakrishnan
  • Reji R. Varghese
  • Joseph S. Paul
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Magnetic Resonance images play a crucial role in the diagnosis and management of the diseases of the brain. The MRI can acquire cross sectional images of our body, based on T1 and T2 relaxation of the tissues. As the information presented in these two images is often complimentary, both these images need to be compared for accurate clinical diagnosis. Hence automatic retrieval of similar slices of T1 weighted images from T2 weighted images or vice versa is of much value. In this paper T2-weighted (or T1 weighted) similar brain MR images within and across the subjects are retrieved using T1-weighted (or T2 weighted) as query images. The rotational and translational invariant form of Modified Local Binary Pattern is used to retrieve the similar anatomical structure MR images.

Keywords

Image Retrieval Local Binary Pattern Query Image Content Base Image Retrieval Relevant Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Einstein, A.: On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat. Annalen der Physik 17, 549–560 (1905)CrossRefMATHGoogle Scholar
  2. 2.
    Bloch, F.: Nuclear induction. Physical Review 70, 460–474 (1946)CrossRefGoogle Scholar
  3. 3.
    Chang, N.S., Fu, K.S.: A Relational Database System for Images. Technical Report TR-EE 79-28, Purdue University (May 1979)Google Scholar
  4. 4.
    Chang, N.S., Fu, K.S.: Query-by pictorial-example. IEEE Trans. on Software Engineering SE-6(6) (1980)Google Scholar
  5. 5.
    Chang, S.K.: Pictorial data-base systems. IEEE Computer (1981)Google Scholar
  6. 6.
    Chang, S.K., Hsu, A.: Image information systems: Where do we go from here? IEEE Trans. on Knowledge and Data Engineering 4(5) (1992)Google Scholar
  7. 7.
    Chang, S.K., Yan, C.W., Dimitroff, D.C., Arndt, T.: An intelligent image database system. IEEE Trans. Software Eng. 14(5) (1988)Google Scholar
  8. 8.
    Kato, T.: Database architecture for content-based image retrieval in Image Storage and Retrieval Systems. In: Jambardino, A.A., Niblack, W.R. (eds.) Proc. SPIE, vol. 1662, pp. 112–123 (1992)Google Scholar
  9. 9.
    Algrain, P., Zhang, H., Petkovic, D.: Content-based representation and retrieval of visual media, A review of the state-of-the-art. Multimed. Tools Appl. 3(3), 179–202 (1996)CrossRefGoogle Scholar
  10. 10.
    Rui, Y., Huang, T., Chang, S.F.: Image retrieval: Current techniques, promising directions and open issues. J. Visual Commun. Image Represent. 10(1), 39–62 (1999)CrossRefGoogle Scholar
  11. 11.
    Smeulders, A.W., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  12. 12.
    Snoek, C.G.M., Worring, M.: Multimodal video indexing: A review of the state-of-the-art. Multimed. Tools Appl. 25(1), 535 (2005)Google Scholar
  13. 13.
    Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content. J. Intell. Inf. Syst. 3(34), 231–262 (1994)CrossRefGoogle Scholar
  14. 14.
    Pentland, A., Picard, R.W., Scaroff, S.: Photobook: Content-based manipulation for image databases. Int. J. Comput. Vision 18(3), 233–254 (1996)CrossRefGoogle Scholar
  15. 15.
    Gupta, A., Jain, R.: Visual information retrieval. Commun. ACM 40(5), 70–79 (1997)CrossRefGoogle Scholar
  16. 16.
    Smith, J.R., Chang, S.F.: VisualSeek: A fully automatic content based query system. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 87–98 (1996)Google Scholar
  17. 17.
    Ma, W.Y., Manjunath, B.: Netra: A toolbox for navigating large image databases. In: Proceedings of the IEEE International Conference on Image Processing, pp. 568–571 (1997)Google Scholar
  18. 18.
    Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: semantics-sensitive integrated matching for picture libraries. IEEE Trans. Pattern Anal. Mach. Intell. 23(9), 947–963 (2001)CrossRefGoogle Scholar
  19. 19.
    Ojala, T., Pietikainen, M., Maeenpaa, T.: Multiresolution gray-scale androtation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  20. 20.
    Unay, D., Ekin, A., Jasinschi, R.: Medical image search and retrieval using local binary patterns and KLT feature points. In: Proc. Int. Conf. Image Process., pp. 997–1000 (2008)Google Scholar
  21. 21.
  22. 22.
    Muller, H., Muller, W.: Automated Benchmarking in Content Based Image Retrieval, work supported by Swiss National Foundation for Scientific Research (grant no. 2000-052426.97)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abraham Varghese
    • 1
  • Kannan Balakrishnan
    • 2
  • Reji R. Varghese
    • 3
  • Joseph S. Paul
    • 4
  1. 1.Adi Shankara Institute of Engineering and TechnologyKaladyIndia
  2. 2.Cochin University of Science and TechnologyCochinIndia
  3. 3.Co-Operative Medical CollegeCochinIndia
  4. 4.Indian Institute of Information Technology and Management, TVMIndia

Personalised recommendations