A Composite Wavelets and Morphology Approach for ECG Noise Filtering

  • Vikrant Bhateja
  • Shabana Urooj
  • Rini Mehrotra
  • Rishendra Verma
  • Aimé Lay-Ekuakille
  • Vijay Deepak Verma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Noisy ECG signals contain variations in the amplitudes or in the time intervals which represents the abnormalities associated with the heart; thereby making visual diagnosis difficult for cardiovascular diseases. Hence, to facilitate proper analysis of ECG; this paper presents a combination of wavelets analysis and morphological filtering as an approach for noise removal in ECG signals. The proposed algorithm involves sub-band decomposition of ECG signal using bi-orthogonal wavelet family. The wavelet detail coefficients containing the noisy components are then processed by morphological operators using linear structuring elements. The morphological filter processes only the corrupted bands without affecting the signal parameters. Simulation results of the proposed algorithm show noteworthy suppression of noise in terms of higher signal-to-noise ratio preserving the ST segment and R wave of ECG.

Index Terms

bi-orthogonal wavelets detail coefficients morphological filtering 

References

  1. 1.
    Dupre, A., Vincent, S., Iaizzo, P.A.: Basic ECG Theory, Recordings and Interpretation. In: Handbook of Cardiac Anatomy, Physiology, and Devices, pp. 191–201 (2005)Google Scholar
  2. 2.
    Gupta, R., Bera, J.N., Mitra, M.: Development of An Embedded System and MATLAB-Based GUI for Online Acquisition and Analysis of ECG Signal. Journal Measurement 43(9), 1119–1126 (2010)CrossRefGoogle Scholar
  3. 3.
    Jain, A., Singh, S., Bhateja, V.: A Robust Approach for Denoising and Enhancement of Mammographic Breast Masses. International Journal on Convergence Computing 1(1), 38–49 (2013)CrossRefGoogle Scholar
  4. 4.
    Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: A Polynomial Filtering Model for Enhancement of Mammogram Lesions. In: Proc. of IEEE International Symposium on Medical Measurements and Applications (MeMeA 2013), Gatineau, Quebec, Canada, pp. 97–100 (2013)Google Scholar
  5. 5.
    Bhateja, V., Urooj, S., Misra, M., Lay-Ekuakille, A.: A Robust Polynomial Filtering Framework for Mammographic Image Enhancement from Biomedical Sensors. IEEE Sensors Journal 13(11), 4147–4156 (2013)CrossRefGoogle Scholar
  6. 6.
    Bhateja, V., Urooj, S., Pandey, A., Misra, M., Lay-Ekuakille, A.: Improvement of Masses Detection in Digital Mammograms employing Non-Linear Filtering. In: Proc. of IEEE International Multi-Conference on Automation, Computing, Control, Communication and Compressed Sensing (iMac4s 2013), pp. 406–408 (March 2013)Google Scholar
  7. 7.
    Srivastava, A., Alankrita, R.A., Bhateja, V.: Combination of Wavelet Transform and Morphological Filtering for Enhancement of Magnetic Resonance Images. In: Snasel, V., Platos, J., El-Qawasmeh, E. (eds.) ICDIPC 2011, Part I. Communications in Computer and Information Science, vol. 188, pp. 460–474. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Raj, A., Alankrita, A.S., Bhateja, V.: Computer Aided Detection of Brain Tumor in Magnetic Resonance Images. International Journal of Engineering and Technology (IACSIT) 3(5), 523–532 (2011)Google Scholar
  9. 9.
    Urooj, S., Lay-Ekuakille, A., Ansari, A.Q., Khan, M., Vergallo, P., Trotta, A.: Volumetric estimation of thorax with cylindrical model and anthropometric measurements. In: 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA), pp. 213–216. IEEE (May 2011)Google Scholar
  10. 10.
    Urooj, S., Khan, M., Ansari, A.Q.: Thorax Physiological Monitoring and Modeling for Diagnosis of Pulmonary Edema. International Journal of Measurement Technologies and Instrumentation Engineering (IJMTIE) 1(2), 54–60 (2011)CrossRefGoogle Scholar
  11. 11.
    Urooj, S., Khan, M., Ansari, A.Q., Salhan, A.K.: Measurement of Thoracic Impedance and Approximations: A Diagnosis Technique for Clinical Utilization. Indian Journal of Industrial and Applied Mathematics 3(2), 85–93 (2012)Google Scholar
  12. 12.
    Urooj, S., Khan, M., Ansari, A.Q., Lay-Ekuakille, A., Salhan, A.K.: Prediction of quantitative intrathoracic fluid volume to diagnose pulmonary oedema using LabVIEW. Computer Methods in Biomechanics and Biomedical Engineering 15(8), 859–864 (2012)CrossRefGoogle Scholar
  13. 13.
    Sun, Y., Chan, K.L., Krishnan, S.M.: ECG Signal Conditioning by Morphological Filtering. Computers in Biology and Medicine 32(6), 465–479 (2002)CrossRefGoogle Scholar
  14. 14.
    Chu, C.-H.H., Delp, E.J.: Impulsive Noise Suppression and Background Normalization of Electrocardiogram Signal Using Morphological Operators. IEEE Transactions on Biomedical Engineering 36, 262–273 (1996)CrossRefGoogle Scholar
  15. 15.
    Liu, Z., Wang, J., Liu, B.: ECG Signal Denoising Based on Morphological Filtering. In: Proc. of the 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan, pp. 1–4 (May 2011)Google Scholar
  16. 16.
    Sayadi, O., Shamsollahi, M.: Multiadaptive Bionic Wavelet Transform: Application to ECG De-noising and Baseline Wandering Reduction. EURASIP Journal on Advances in Signal Processing 2007, 1–11 (2007)CrossRefGoogle Scholar
  17. 17.
    Alfaouri, M., Daqrouq, K.: ECG Signal De-noising by Wavelet Transform Thresholding. American Journal of Applied Sciences 5(3), 276–281 (2008)CrossRefGoogle Scholar
  18. 18.
    Sharma, L.N., Dandapat, S., Mahanta, A.: ECG Signal denoising Using Higher Order Statistics in Wavelet Subbands. Biomedical Signal Processing and Control 5, 214–222 (2010)CrossRefGoogle Scholar
  19. 19.
    Verma, R., Mehrotra, R., Bhateja, V.: An Improved Algorithm for Noise Suppression and Baseline Correction of ECG Signals. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proc. of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 733–739. Springer, Heidelberg (2013)Google Scholar
  20. 20.
    Verma, R., Mehrotra, R., Bhateja, V.: A New Morphological Filtering Algorithm for Pre-Processing of Electrocardiographic Signals. In: Proc. (SPRINGER) of the Fourth International Conference on Signal and Image Processing (ICSIP 2012), Coimbatore, India, pp. 193–201 (December 2012)Google Scholar
  21. 21.
    Mehrotra, R., Verma, R., Bhateja, V.: An Integration of Improved Median and Morphological Filtering Techniques for ECG Processing. In: Proc. of the 3rd International Advance Computing Conference (IACC 2013), Ghaziabad, U.P., India, pp. 1212–1217 (2013)Google Scholar
  22. 22.
    Bhateja, V., Devi, S.: A Novel Framework for Edge Detection of Microcalcifications using a Non-Linear Enhancement Operator and Morphological Filter. In: Proc. of IEEE 3rd International Conference on Electronics & Computer Technology (ICECT 2011), Kanyakumari, India, vol. 5, pp. 419–424 (April 2011)Google Scholar
  23. 23.
    Lay-Ekuakille, A., Vergallo, P., Griffo, G., Conversano, F., Casciaro, S., Urooj, S., Bhateja, V., Trabacca, A.: Mutidimensional Analysis of EEG Features using Advanced Spectral Estimates for Diagnosis Accuracy. In: Proc. of IEEE International Symposium on Medical Measurements and Applications (MeMeA 2013), Gatineau, Quebec, Canada, pp. 237–240 (May 2013)Google Scholar
  24. 24.
    Moody, G.B., Mark, R.G.: Impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medical and Biology Magazine 20, 45–50 (2001)CrossRefGoogle Scholar
  25. 25.
    Jain, A., Bhateja, V.: A Novel Image Denoising Algorithm for Suppressing Mixture of Speckle and Impulse Noise in Spatial Domain. In: Proc. of IEEE 3rd International Confer-ence on Electronics and Computer Technology (ICECT), Kanyakumari, India, vol. 3, pp. 207–211 (2013)Google Scholar
  26. 26.
    Jain, A., Bhateja, V.: A Full-Reference Image Quality Metric for Objective Evaluation in Spatial Domain. In: Proc. of IEEE International Conference on Communication and Industrial Application (ICCIA), Kolkata, W. B., India, pp. 91–95 (2011)Google Scholar
  27. 27.
    Singh, S., Jain, A., Bhateja, V.: A Comparative Evaluation of Various Despeckling Algorithms for Medical Images. In: Proc. of (ACMICPS) CUBE International Information Technology Conference & Exhibition, Pune, India, pp. 32–37 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vikrant Bhateja
    • 1
  • Shabana Urooj
    • 2
  • Rini Mehrotra
    • 1
  • Rishendra Verma
    • 1
  • Aimé Lay-Ekuakille
    • 3
  • Vijay Deepak Verma
    • 4
  1. 1.Department of Electronics and Communication EngineeringShri Ramswaroop Memorial Group of Professional Colleges (SRMGPC)LucknowIndia
  2. 2.Department of Electrical Engineering, School of EngineeringGautam Buddha UniversityGreater-NoidaIndia
  3. 3.Department of Innovation EngineeringUniversity of SalentoLecceItaly
  4. 4.Medical University & Associated Hospitals GreaterNoidaIndia

Personalised recommendations