New Additive Wavelet Image Fusion Algorithm for Satellite Images

  • B. Sathya Bama
  • S. G. Siva Sankari
  • R. Evangeline Jenita Kamalam
  • P. Santhosh Kumar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Fusion of Low Resolution Multi Spectral (LRM) image and High Resolution Panchromatic (HRP) image is a very important topic in the field of remote sensing. This paper represents an efficient method for image fusion using New Additive Wavelet transform (NAW) based on the à trous algorithm. The fused image should preserve both geometric and the radiometric information. The use of geometric features along with spectral information improves the visualization quality of imagery. In this method intensity of the LRM image is added to the difference of the wavelet planes of HRP and LRP. The experimental results show that this method can well preserve spectral and spatial details of the source images. The proposed method provides competitive or even superior results for the input images compared to other well-known methods by providing 85.25% Quality with No Reference (QNR).

Keywords

correlation coefficient discrepancy MSSIM radiometric distortion index sobel grades SSIM 

References

  1. 1.
    Choi, M.: A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans. Geosci. Remote Sens. 44(6), 1672–1682 (2006)CrossRefGoogle Scholar
  2. 2.
    González-Audícana, M., Otazu, X., Fors, O., Seco, A.: Comparison between the Mallat’s and the ‘à trous’ discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. Int. J. Remote Sens. 26(3), 597–616 (2005)Google Scholar
  3. 3.
    Núnez, J., Otazu, X., Fors, O., Prades, A., Pala, V., Arbiol, R.: Multiresolution-based image fusion with additive wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 37(3), 1204–1211 (1999)CrossRefGoogle Scholar
  4. 4.
    Stathaki, T.: Image Fusion Algorithms and Applications, 1st edn., ch. 6. Elsevier, Amsterdam (2008)Google Scholar
  5. 5.
    Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., Selva, M.: Multispectral and panchromatic data fusion assignment without reference. Photogramm. Eng. Remote Sens. 74(2), 193–200 (2008)CrossRefGoogle Scholar
  6. 6.
    Wang, Z., Bovik, A.C., Sheikh, H.R.: Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13(4) (April 2004)Google Scholar
  7. 7.
    Zhou, J., Civico, D.L., Silander, J.A.: A wavelet transform method to merge landsat TM and SPOT panchromatic data. International Journal of Remote Sensing 19(4) (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • B. Sathya Bama
    • 1
  • S. G. Siva Sankari
    • 1
  • R. Evangeline Jenita Kamalam
    • 1
  • P. Santhosh Kumar
    • 1
  1. 1.Department of ECEThigarajar College of EngineeringMaduraiIndia

Personalised recommendations