Performance Analysis of Multiclass Common Spatial Patterns in Brain-Computer Interface

  • Soumyadip Chatterjee
  • Saugat Bhattacharyya
  • Amit Konar
  • D. N. Tibarewala
  • Anwesha Khasnobish
  • R. Janarthanan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8251)

Abstract

Brain-Computer Interfacing (BCI) aims to assist, enhance, or repair human cognitive or sensory-motor functions. The classification of EEG signals plays a crucial role in BCI implementation. In this paper we have implemented a multi-class CSP Mutual Information Feature Selection (MIFS) algorithm to classify our EEG data for three class Motor Imagery BCI and have presented a comparative study of different classification algorithms including k-nearest neighbor (kNN) and Fuzzy kNN algorithm, linear discriminant analysis (LDA), Quadratic discriminant analysis (QDA), support vector machine (SVM), radial basis function (RBF) SVM and Naive Bayesian (NB) classifiers algorithms. It is observed that Fuzzy kNN and kNN algorithm provides the highest classification accuracy of 92.65% and 92.29% which surpasses the classification accuracy of the other algorithms.

Keywords

Brain-Computer Interfacing Electroencephalography Common Spatial Pattern Mutual Information Features Selection k-Nearest Neighbor Fuzzy k-Nearest Neighbor Linear Discriminant Analysis Quadratic Discriminant Analysis Support Vector Machine Nave-Bayesian 

References

  1. 1.
    Lebedev, M.A., Nicolelis, M.A.: Brain-machine Interface: Past, Present and future. J. Trends Neurosci. 29(9), 536–546 (2006)CrossRefGoogle Scholar
  2. 2.
    Vaughan, T.M., et al.: Brain-computer Interface Technology: A review of the second international meeting. IEEE Trans. Neural Sys. Rehab. Engg. 11(2), 94–109 (2003)CrossRefGoogle Scholar
  3. 3.
    Daly, J.J., Wolpaw, J.R.: Brain-computer interfaces in neurological rehabilitation. Lancet Neurol. 7, 1032–1043 (2008)CrossRefGoogle Scholar
  4. 4.
    Wolpaw, J.R., et al.: Brain-computer interfaces for Communication and Control. Clin. Neurophy. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  5. 5.
    Mller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophy. 110(5), 787–798 (1999)CrossRefGoogle Scholar
  6. 6.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehab. Engg. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  7. 7.
    Wu, W., Gao, X., Gao, S.: One-versus-the-rest (OVR) algorithm: An extension of common spatial patterns (CSP) algorithm to multi-class case. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS), pp. 2387–2390. IEEE Press, Shanghai (2006)Google Scholar
  8. 8.
    Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Net. 5(4), 537–550 (1994)CrossRefGoogle Scholar
  9. 9.
    Lotte, F., Congedo, M., Lecuyer, A., Lamarche, F., Arnaldi, B.: A Review of Classification Algorithms for EEG-based Brain-Computer Interfaces. J. Neural Eng. 4, R1–R13 (2007)Google Scholar
  10. 10.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic Press (2006)Google Scholar
  11. 11.
    Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Systems, Man and Cybernetics SMC 15(4), 580–585 (1985)CrossRefGoogle Scholar
  12. 12.
    Conover, W.J., Iman, R.L.: Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician 35(3), 124–129 (1981)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Soumyadip Chatterjee
    • 1
  • Saugat Bhattacharyya
    • 1
  • Amit Konar
    • 1
  • D. N. Tibarewala
    • 2
  • Anwesha Khasnobish
    • 2
  • R. Janarthanan
    • 3
  1. 1.Department of Electronics and Telecommunication EngineeringJadavpur UniversityKolkataIndia
  2. 2.School of Bioscience and EngineeringJadavpur UniversityKolkataIndia
  3. 3.Department of Computer ScienceTJS Engineering CollegeChennaiIndia

Personalised recommendations