A Framework for Cross Account Analysis

  • Vugranam C. Sreedhar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


A key challenge of Strategic Outsourcing (SO) from a service delivery perspective is trying to understand one key question: Why two SO accounts that seemingly looks the same have very different cost structure? In this article we present a parameterized framework for modeling and analysis of cross account behavior. We abstract certain key account features as parameters and construct models for answering behavioral characteristics of SO accounts. We use spectral graph clustering for detecting similar accounts, and also develop parameterized clustering for detecting coherent behavior of accounts. We have implemented a prototype of the approach and we discuss some preliminary empirical result of cross account analysis.


Data mining spectral graphs clusterning Workload Effort Service Delivery 


  1. 1.
    Chung, F.: Spectral Graph Theory. CBMS Reg. Conf. Ser. Math., vol. 92. American Mathematical Society (1997)Google Scholar
  2. 2.
    Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4), 395–416 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lenchner, J., Rosu, D., Velasquez, N.F., Guo, S., Christiance, K., DeFelice, D., Deshpande, P.M., Kummamuru, K., Kraus, N., Luan, L.Z., Majumdar, D., McLaughlin, M., Ofek-Koifman, S., Perng, D.P.C.-S., Roitman, H., Ward, C., Young, J.: A service delivery platform for server management services. IBM J. Res. Dev. 53(6), 792–808 (2009)CrossRefGoogle Scholar
  4. 4.
    Marcu, P., Grabarnik, G., Luan, L., Rosu, D., Shwartz, L., Ward, C.: Towards an optimized model of incident ticket correlation. In: Proceedings of the 11th IFIP/IEEE International Conference on Symposium on Integrated Network Management, IM 2009, pp. 569–576. IEEE Press, Piscataway (2009)CrossRefGoogle Scholar
  5. 5.
    Khan, A., Jamjoom, H., Sun, J.: Aim-hi: a framework for request routing in large-scale it global service delivery. IBM J. Res. Dev. 53(6), 820–829 (2009)CrossRefGoogle Scholar
  6. 6.
    Symonenko, S., Rowe, S., Liddy, E.D.: Illuminating trouble tickets with sublanguage theory. In: Proceedings of the Language Technology Conference of the NAACL, Companion Volume: Short Papers. NAACL-Short 2006, pp. 169–172. Association for Computational Linguistics, Stroudsburg (2006)CrossRefGoogle Scholar
  7. 7.
    Loewenstern, D., Pinel, F., Shwartz, L., Gatti, M., Herrmann, R.: A learning method for improving quality of service infrastructure management in new technical support groups. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 599–606. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Buco, M.J., Rosu, D., Meliksetian, D.S., Wu, F., Anerousis, N.: Effort instrumentation and management in service delivery environments. In: [10], pp. 257–260Google Scholar
  9. 9.
    Diao, Y., Heching, A.: Analysis of operational data to improve performance in service delivery systems. In: [10], pp. 302–308Google Scholar
  10. 10.
    8th International Conference on Network and Service Management, CNSM 2012, October 22-26. IEEE, Las Vegas (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vugranam C. Sreedhar
    • 1
  1. 1.IBM TJ Watson Research CenterUSA

Personalised recommendations