A Case Based Approach to Serve Information Needs in Knowledge Intensive Processes

  • Debdoot Mukherjee
  • Jeanette Blomberg
  • Rama Akkiraju
  • Dinesh Raghu
  • Monika Gupta
  • Sugata Ghosal
  • Mu Qiao
  • Taiga Nakamura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


Case workers who are involved in knowledge intensive business processes have critical information needs.When dealing with a case, they often need to check how similar case(s) were handled and what best practices, methods and tools proved useful. In this paper, we present our Solution Information Management (SIM) system developed to assist case workers by retrieving and offering targeted and contextual content recommendations to them. In particular, we present a novel method for intelligently weighing different fields in a case when they are used as context to derive recommendations. Experimental results indicate that our approach can yield recommendations that are approximately 15 more precise than those obtained through a baseline approach where the fields in the context have equal weights. SIM is being actively used by case workers in a large IT services company.


Business Process Knowledge Worker Business Process Management Business Process Model Case Worker 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Case Management - Combining Knowledge with Process, (accessed: May 29, 2013)
  2. 2.
    Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  3. 3.
    Alavi, M., Leidner, D.E.: Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly 25(1), 107–136 (2001)CrossRefGoogle Scholar
  4. 4.
    Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 335–336. ACM (1998)Google Scholar
  5. 5.
    Feldman, S., Sherman, C.: The high cost of not finding information. Information Today Inc. (2004)Google Scholar
  6. 6.
    Gupta, M., Mukherjee, D., Mani, S., Sinha, V.S., Sinha, S.: Serving information needs in business process consulting. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 231–247. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    IDC. Quantifying Enterprise Search (2002)Google Scholar
  8. 8.
    Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans. Inf. Syst. 20(4), 422–446 (2002)CrossRefGoogle Scholar
  9. 9.
    Kim, J., Xue, X., Croft, W.B.: A probabilistic retrieval model for semistructured data. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 228–239. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Liptchinsky, V., Khazankin, R., Truong, H.-L., Dustdar, S.: A novel approach to modeling context-aware and social collaboration processes. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 565–580. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Malone, T.W., Crowston, K., Herman, G.A.: Organizing business knowledge. MIT Press (2003)Google Scholar
  12. 12.
    McDermott, R.: Why information technology inspired but cannot deliver knowledge management. California Management Review 41(4), 103–117 (1999)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Motahari-Nezhad, H.R., Bartolini, C., Graupner, S., Spence, S.: Adaptive case management in the social enterprise. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 550–557. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Nonaka, I.: A dynamic theory of organizational knowledge creation. Organization ScienceGoogle Scholar
  15. 15.
    Osiriski, S., Stefanowski, J., Weiss, D.: Lingo: Search results clustering algorithm based on singular value decomposition. In: Proceedings of the Intelligent Information Processing and Web Mining, IIPWM, vol. 4, pp. 359–368 (2004)Google Scholar
  16. 16.
    Reinhardt, W., Schmidt, B., Sloep, P., Drachsler, H.: Knowledge Worker Roles and Actions: Results of Two Empirical Studies. Knowledge and Process Management 18(3), 150–174 (2011)CrossRefGoogle Scholar
  17. 17.
    Rissland, E.L., Daniels, J.J.: A hybrid cbr-ir approach to legal information retrieval. In: Proceedings of the Fifth International Conference on Artificial Intelligence and Law (ICAIL)Google Scholar
  18. 18.
    Robertson, S., Zaragoza, H., Taylor, M.: Simple bm25 extension to multiple weighted fields. In: Proceedings of the Thirteenth ACM International Conference on Information and Knowledge Management, pp. 42–49. ACM (2004)Google Scholar
  19. 19.
    Song, M., Miller, J.A., Arpinar, I.B.: Repox: An xml repository for workflow designs and specifications. PhD thesis, Citeseer (2001)Google Scholar
  20. 20.
    Swenson, K.D.: Mastering the Unpredictable. Meghan-Kiffer Press (2010)Google Scholar
  21. 21.
    Swenson, K.D., Palmer, N., Kemsley, S., et al.: Social BPM. Future Strategies Inc. (2011)Google Scholar
  22. 22.
    Swenson, K.D., Palmer, N., et al.: How Knowledge Workers Get Things Done. Future Strategies Inc. (2012)Google Scholar
  23. 23.
    Van der Aalst, W.M., Weske, M., Grünbauer, D.: Case handling: a new paradigm for business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)CrossRefGoogle Scholar
  24. 24.
    Yan, Z., Dijkman, R., Grefen, P.: Business process model repositories–framework and survey. Information and Software Technology 54(4), 380–395 (2012)CrossRefGoogle Scholar
  25. 25.
    Mukherjee, D., et al.: A Case Based Approach to Serve Information Need. Knowledge Intensive Processes. IBM Technical Report (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Debdoot Mukherjee
    • 1
  • Jeanette Blomberg
    • 2
  • Rama Akkiraju
    • 2
  • Dinesh Raghu
    • 1
  • Monika Gupta
    • 1
  • Sugata Ghosal
    • 1
  • Mu Qiao
    • 2
  • Taiga Nakamura
    • 2
  1. 1.IBM ResearchIndia
  2. 2.IBM Almaden Research CenterUSA

Personalised recommendations