An Approach for Compliance-Aware Service Selection with Genetic Algorithms

  • Fatih Karatas
  • Dogan Kesdogan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


Genetic algorithms are popular for service selection as they deliver good results in short time. However, current approaches do not consider compliance rules for single tasks in a process model. To address this issue, we present an approach for compliance-aware service selection with genetic algorithms. Our approach employs the notion of compliance distance to detect and recover violations and can be integrated into existing genetic algorithms by means of a repair operation. As a proof-of-concept, we present a genetic algorithm incorporating our approach and compare it with related state-of-the-art genetic algorithms lacking this kind of check and recovery mechanism for compliance.


Service-oriented Computing Service Selection Compliance Multi-objective Optimization Genetic Algorithms 


  1. 1.
    Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-oriented computing: State of the art and research challenges. Computer 40(11), 38–45 (2007)CrossRefGoogle Scholar
  2. 2.
    Yu, T., Lin, K.J.: Service selection algorithms for web services with end-to-end qos constraints. In: Proc. IEEE Intl. Conf. on E-Commerce Tech., pp. 129–136 (2004)Google Scholar
  3. 3.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kharbili, M.E., de Medeiros, A.K.A., Stein, S., van der Aalst, W.M.P.: Business process compliance checking: Current state and future challenges. In: Loos, P., Markus, Nüttgens, et al (eds.) MobIS. LNI, vol. 141, pp. 107–113. GI (2008)Google Scholar
  5. 5.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: An approach for qos-aware service composition based on genetic algorithms. In: Proc. Conference on Genetic and Evolutionary Computation (GECCO), pp. 1069–1075 (2005)Google Scholar
  6. 6.
    Jaeger, M.C., Mühl, G.: Qos-based selection of services: The implementation of a genetic algorithm. In: Communication in Distributed Systems (KiVS), 2007 ITG-GI Conference, pp. 1–12 (2007)Google Scholar
  7. 7.
    Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based qoS-aware service compositions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems. Springer (2012)Google Scholar
  10. 10.
    Curtis, B., Kellner, M.I., Over, J.: Process modeling. Communications of the ACM 35(9), 75–90 (1992)CrossRefGoogle Scholar
  11. 11.
    Stohr, E.A., Zhao, J.L.: Workflow automation: Overview and research issues. Information Systems Frontiers 3(3), 281–296 (2001)CrossRefGoogle Scholar
  12. 12.
    Deb, K., Pratab, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6(2), 182–197 (2002)CrossRefGoogle Scholar
  13. 13.
    Durillo, J.J., Nebro, A.J.: jMetal: A java framework for multi-objective optimization. Advances in Engineering Software 42(10), 760–771 (2011)CrossRefGoogle Scholar
  14. 14.
    Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN VIII, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al. (eds.) Evolutionary Methods for Design, Optimisation, and Control, CINME, Barcelona, Spain, pp. 95–100 (2002)Google Scholar
  16. 16.
    Ghose, A., Koliadis, G.: Auditing business process compliance. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Accorsi, R., Lowis, L., Sato, Y.: Automated certification for compliant cloud-based business processes. BISE 3(3), 145–154 (2011)Google Scholar
  18. 18.
    Governatori, G., Hoffmann, J., Sadiq, S., Weber, I.: Detecting regulatory compliance for business process models through semantic annotations. In: Ardagna, D., Mecella, M., Yang, J. (eds.) RGU 1974. LNBIP, vol. 17, pp. 5–17. Springer, Heidelberg (1974)Google Scholar
  19. 19.
    Bernardi, G., Bugliesi, M., Macedonio, D., Rossi, S.: A theory of adaptable contract-based service composition. In: Proc. 2008 10th Intl. Symp. on Symbolic and Numeric Algorithms for Scientific Computing. SYNASC 2008, pp. 327–334. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  20. 20.
    Narayanan, S., McIlraith, S.A.: Simulation, verification and automated composition of web services. In: Proc. 11th Intl. Conf. on World Wide Web (WWW), pp. 77–88 (2002)Google Scholar
  21. 21.
    Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property specification and verification for service composition. In: Aberer, K., Peng, Z., Rundensteiner, E.A., Zhang, Y., Li, X. (eds.) WISE 2006. LNCS, vol. 4255, pp. 156–168. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Information Systems 33(1), 64–95 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fatih Karatas
    • 1
  • Dogan Kesdogan
    • 2
  1. 1.IT Security ManagementUniversity of SiegenSiegenGermany
  2. 2.Management Information Systems IVUniversity of RegensburgRegensburgGermany

Personalised recommendations