Prediction of Remaining Service Execution Time Using Stochastic Petri Nets with Arbitrary Firing Delays

  • Andreas Rogge-Solti
  • Mathias Weske
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


Companies realize their services by business processes to stay competitive in a dynamic market environment. In particular, they track the current state of the process to detect undesired deviations, to provide customers with predicted remaining durations, and to improve the ability to schedule resources accordingly. In this setting, we propose an approach to predict remaining process execution time, taking into account passed time since the last observed event.

While existing approaches update predictions only upon event arrival and subtract elapsed time from the latest predictions, our method also considers expected events that have not yet occurred, resulting in better prediction quality. Moreover, the prediction approach is based on the Petri net formalism and is able to model concurrency appropriately. We present the algorithm and its implementation in ProM and compare its predictive performance to state-of-the-art approaches in simulated experiments and in an industry case study.


business process performance remaining time prediction stochastic Petri nets generally distributed durations conditional probability 


  1. 1.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  3. 3.
    van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process models for conformance checking and performance analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2, 182–192 (2012)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Information Systems 36(2), 450–475 (2011)CrossRefGoogle Scholar
  5. 5.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  6. 6.
    Bobbio, A., Telek, M.: Computational restrictions for SPN with generally distributed transition times. In: Echtle, K., Powell, D.R., Hammer, D. (eds.) EDCC 1994. LNCS, vol. 852, pp. 131–148. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  7. 7.
    van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle time prediction: When will this case finally be finished? In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. International Journal of Forecasting 22(3), 443–473 (2006)CrossRefGoogle Scholar
  10. 10.
    Hwang, S.Y., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling and estimating the QoS of web-services-based workflows. Information Sciences 177(23), 5484–5503 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Härdle, W.: Applied nonparametric regression. Cambridge University Press (1990)Google Scholar
  12. 12.
    Jiang, W., Au, T., Tsui, K.L.: A statistical process control approach to business activity monitoring. IIE Transactions 39(3), 235–249 (2007)CrossRefGoogle Scholar
  13. 13.
    Kang, B., Kim, D., Kang, S.H.: Periodic performance prediction for real-time business process monitoring. Industrial Management & Data Systems 112(1), 4–23 (2011)CrossRefGoogle Scholar
  14. 14.
    Leitner, P., Wetzstein, B., Rosenberg, F., Michlmayr, A., Dustdar, S., Leymann, F.: Runtime prediction of service level agreement violations for composite services. In: Dan, A., Gittler, F., Toumani, F. (eds.) ICSOC/ServiceWave 2009. LNCS, vol. 6275, pp. 176–186. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Lohmann, N., Verbeek, E., Dijkman, R.: Petri net transformations for business processes – A survey. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 46–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The effect of execution policies on the semantics and analysis of stochastic Petri nets. IEEE Transactions on Software Engineering 15(7), 832–846 (1989)CrossRefGoogle Scholar
  17. 17.
    Marsan, M.A., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM TOCS 2(2), 93–122 (1984)CrossRefGoogle Scholar
  18. 18.
    Pika, A., van der Aalst, W.M.P., Fidge, C.J., ter Hofstede, A.H.M., Wynn, M.T.: Predicting deadline transgressions using event logs. In: La Rosa, M., Soffer, P. (eds.) BPM 2012 Workshops. LNBIP, vol. 132, pp. 211–216. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic Petri nets with arbitrary delay distributions from event logs. In: BPM Workshops. Springer, Heigelberg (to appear)Google Scholar
  20. 20.
    Rozinat, A., Wynn, M.T., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.J.: Workflow simulation for operational decision support. Data & Knowledge Engineering 68(9), 834–850 (2009)CrossRefGoogle Scholar
  21. 21.
    Strum, D.P., May, J.H., Vargas, L.G.: Modeling the uncertainty of surgical procedure times: Comparison of log-normal and normal models. Anesthesiology 92(4), 1160–1167 (2000)CrossRefGoogle Scholar
  22. 22.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures, 2nd edn. Springer (2012)Google Scholar
  23. 23.
    Zeng, L., Lingenfelder, C., Lei, H., Chang, H.: Event-driven quality of service prediction. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364, pp. 147–161. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Zheng, H., Yang, J., Zhao, W., Bouguettaya, A.: QoS analysis for web service compositions based on probabilistic qoS. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 47–61. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  25. 25.
    Zimmermann, A.: Modeling and evaluation of stochastic Petri nets with TimeNET 4.1. In: 2012 6th International Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS), pp. 54–63. IEEE (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andreas Rogge-Solti
    • 1
  • Mathias Weske
    • 1
  1. 1.Business Process Technology Group, Hasso Plattner InstituteUniversity of PotsdamGermany

Personalised recommendations