Process Discovery Using Prior Knowledge

  • Aubrey J. Rembert
  • Amos Omokpo
  • Pietro Mazzoleni
  • Richard T. Goodwin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


In this paper, we describe a process discovery algorithm that leverages prior knowledge and process execution data to learn a control-flow model. Most process discovery algorithms are not able to exploit prior knowledge supplied by a domain expert. Our algorithm incorporates prior knowledge using ideas from Bayesian statistics. We demonstrate that our algorithm is able to recover a control-flow model in the presence of noisy process execution data, and uncertain prior knowledge.


  1. 1.
    Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Trans. Software Engineering Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    van der Aalst, W., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  4. 4.
    Fahland, D., van der Aalst, W.M.P.: Repairing process models to reflect reality. In: Barros, A., Gal, A., Kindler, E. (eds.) BPM 2012. LNCS, vol. 7481, pp. 229–245. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Medeiros, A., Weijters, A., Aalst, W.: Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery 14(2), 245–304 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ellis, C.A.: Formal and informal models of office activity. In: IFIP Congress, pp. 11–22 (1983)Google Scholar
  7. 7.
    Rembert, A.J., Ellis, C(S.): Learning the control-flow of a business process using ICN-based process models. In: Baresi, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 346–351. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: KDD 2005: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 275–284. ACM Press, New York (2005)CrossRefGoogle Scholar
  9. 9.
    Verbeek, H.E., Bose, J.C.: Prom 6 tutorial, reviewexample. (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aubrey J. Rembert
    • 1
  • Amos Omokpo
    • 1
  • Pietro Mazzoleni
    • 1
  • Richard T. Goodwin
    • 1
  1. 1.IBM T.J. Watson Research CenterUSA

Personalised recommendations