QoS-Aware Cloud Service Composition Using Time Series

  • Zhen Ye
  • Athman Bouguettaya
  • Xiaofang Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


Cloud service composition is usually long term based and economically driven. We propose to use multi-dimensional Time Series to represent the economic models during composition. Cloud service composition problem is then modeled as a similarity search problem. Next, a novel correlation-based search algorithm is proposed. Finally, experiments and their results are presented to show the performance of the proposed composition approach.


Cloud Computing Service Composition Composite Service Cloud Service Provider Multiple Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Motahari-Nezhad, H., Stephenson, B., Singhal, S.: Outsourcing business to cloud computing services: Opportunities and challenges. IEEE Internet Computing (2009)Google Scholar
  2. 2.
    Youseff, L., Butrico, M., Da Silva, D.: Toward a unified ontology of cloud computing. In: Grid Computing Environments Workshop (2009)Google Scholar
  3. 3.
    Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-aware middleware for web services composition. IEEE Transactions on Software Engineering 30(5), 311–327 (2004)CrossRefGoogle Scholar
  4. 4.
    Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: A survey and novel approach. Data Mining in Time Series Databases 57, 1–22 (2004)CrossRefGoogle Scholar
  5. 5.
    Bashir, F.I., Khokhar, A.A., Schonfeld, D.: Real-time motion trajectory-based indexing and retrieval of video sequences. IEEE Transactions on Multimedia 9(1), 58–65 (2007)CrossRefGoogle Scholar
  6. 6.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., et al.: Above the clouds: A berkeley view of cloud computing. EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28 (2009)Google Scholar
  7. 7.
    Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet Computing, 51–59 (2004)Google Scholar
  8. 8.
    Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing web services on the semantic web. The VLDB Journal 12(4), 333–351 (2003)CrossRefGoogle Scholar
  10. 10.
    Berkelaar, M., Eikland, K., Notebaert, P., et al.: lpsolve: Open source (mixed-integer) linear programming system. Eindhoven U. of Technology (2004)Google Scholar
  11. 11.
    Canfora, G., Di Penta, M., Esposito, R., Villani, M.: An approach for QoS-aware service composition based on genetic algorithms. In: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 1069–1075 (2005)Google Scholar
  12. 12.
    Ye, Z., Zhou, X., Bouguettaya, A.: Genetic algorithm based qoS-aware service compositions in cloud computing. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588, pp. 321–334. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowledge and Information Systems 3(3), 263–286 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Kahveci, T., Singh, A.: Variable length queries for time series data. In: Proceedings of the 17th International Conference on Data Engineering, pp. 273–282. IEEE (2001)Google Scholar
  15. 15.
    Wu, Y.-L., Agrawal, D., El Abbadi, A.: A comparison of dft and dwt based similarity search in time-series databases. In: Proceedings of the Ninth International Conference on Information and Knowledge Management, pp. 488–495. ACM (2000)Google Scholar
  16. 16.
    Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming pattern discovery in multiple time-series. In: Proceedings of the 31st International Conference on Very Large Data Bases, pp. 697–708. VLDB Endowment (2005)Google Scholar
  17. 17.
    Cui, B., Zhao, Z., Tok, W.H.: A framework for similarity search of time series cliques with natural relations. IEEE Transactions on Knowledge and Data Engineering 24(3), 385–398 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhen Ye
    • 1
  • Athman Bouguettaya
    • 2
  • Xiaofang Zhou
    • 1
  1. 1.The University of QueenslandAustralia
  2. 2.Royal Melbourne Institute of TechnologyAustralia

Personalised recommendations