On-the-Fly Adaptation of Dynamic Service-Based Systems: Incrementality, Reduction and Reuse

  • Antonio Bucchiarone
  • Annapaola Marconi
  • Claudio Antares Mezzina
  • Marco Pistore
  • Heorhi Raik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8274)


On-the-fly adaptation is where adaptation activities are not explicitly represented at design time but are discovered and managed at run time considering all aspect of the execution environments. In this paper we present a comprehensive framework for the on-the-fly adaptation of highly dynamic service-based systems. The framework relies on advanced context-aware adaptation techniques that allow for i) incremental handling of complex adaptation problems by interleaving problem solving and solution execution, ii) reduction in the complexity of each adaptation problem by minimizing the search space according to the specific execution context, and iii) reuse of adaptation solutions by learning from past executions. We evaluate the applicability of the proposed approach on a real world scenario based on the operation of the Bremen sea port.


  1. 1.
    Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes with Dynamo and the JBoss rule engine. In: Proc. of ESSPE 2007, pp. 11–20. ACM (2007)Google Scholar
  2. 2.
    Bertoli, P., Pistore, M., Traverso, P.: Automated composition of web services via planning in asynchronous domains. Artif. Intell. 174(3-4), 316–361 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Böse, F., Piotrowski, J.: Autonomously controlled storage management in vehicle logistics applications of RFID and mobile computing systems. International Journal of RT Technologies: Research an Application 1(1), 57–76 (2009)CrossRefGoogle Scholar
  4. 4.
    Bucchiarone, A., Marconi, A., Pistore, M., Raik, H.: Dynamic Adaptation of Fragment-based and Context-aware Business Processes. In: Proc. of ICWS 2012, pp. 33–41 (2012)Google Scholar
  5. 5.
    Bucchiarone, A., Antares Mezzina, C., Pistore, M.: Captlang: a language for context-aware and adaptable business processes. In: Proc. of VaMoS 2013, pp. 12:1–12:5. ACM (2013)Google Scholar
  6. 6.
    Colombo, M., Di Nitto, E., Mauri, M.: SCENE: A service composition execution environment supporting dynamic changes disciplined through rules. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 191–202. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Dal Lago, U., Pistore, M., Traverso, P.: Planning with a Language for Extended Goals. In: Proc. of AAAI 2002 (2002)Google Scholar
  8. 8.
    de Leoni, M.: Adaptive Process Management in Highly Dynamic and Pervasive Scenarios. In: Proc. of YR-SOC, pp. 83–97 (2009)Google Scholar
  9. 9.
    Eberle, H., Unger, T., Leymann, F.: Process fragments. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 398–405. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Marconi, A., Pistore, M., Traverso, P.: Automated Composition of Web Services: the ASTRO Approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)Google Scholar
  11. 11.
    Mirandola, R., Potena, P.: A qos-based framework for the adaptation of service-based systems. Scalable Computing: Practice and Experience 12(1), 63–78 (2011)Google Scholar
  12. 12.
    Pfeffer, H., Linner, D., Steglich, S.: Dynamic adaptation of workflow based service compositions. In: Huang, D.-S., Wunsch II, D.C., Levine, D.S., Jo, K.-H. (eds.) ICIC 2008. LNCS, vol. 5226, pp. 763–774. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Pistore, M., Traverso, P., Paolucci, M., Wagner, M.: From software services to a future internet of services. In: Proc. of FIA 2009, pp. 183–192 (2009)Google Scholar
  14. 14.
    Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: Astro-captevo: Dynamic context-aware adaptation for service-based systems. In: Proc. of SERVICES 2012, pp. 385–392 (2012)Google Scholar
  15. 15.
    Spanoudakis, G., Zisman, A., Kozlenkov, A.: A service discovery framework for service centric systems. In: Proc. of IEEE SCC 2005, pp. 251–259 (2005)Google Scholar
  16. 16.
    Verma, K., Gomadam, K., Sheth, A.P., Miller, J.A., Wu, Z.: The METEOR-S approach for configuring and executing dynamic web processes. Technical report, University of Georgia, Athens (2005)Google Scholar
  17. 17.
    Wang, C., Pazat, J.L.: A two-phase online prediction approach for accurate and timely adaptation decision. In: Proc. of SCC 2012, pp. 218–225. IEEE Computer Society (2012)Google Scholar
  18. 18.
    Yan, Y., Poizat, P., Zhao, L.: Self-adaptive service composition through graphplan repair. In: Proc. of ICWS 2010, pp. 624–627 (2010)Google Scholar
  19. 19.
    Zhai, Y., Zhang, J., Lin, K.: Soa middleware support for service process reconfiguration with end-to-end qos constraints. In: Proc. of ICWS 2009, pp. 815–822 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio Bucchiarone
    • 1
  • Annapaola Marconi
    • 1
  • Claudio Antares Mezzina
    • 1
  • Marco Pistore
    • 1
  • Heorhi Raik
    • 1
  1. 1.Fondazione Bruno KesslerTrentoItaly

Personalised recommendations