A Novel Approach to Retrieval of Similar Patterns in Biological Images

  • Andrzej Sluzek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8034)


Novel descriptors of keypoints are proposed for matching (primarily) biological images. The descriptors incorporate characteristics of limited-size neighborhoods of keypoints. Descriptors are quantized into small vocabularies representing photometry of images (SIFT words) and geometry of their neighborhoods, so that significant distortions can be tolerated. In order to keep precision at a high level, Harris-Affine and Hessian-Affine detectors are independently applied. The retrieval results are accepted only if confirmed by both techniques. Using several test datasets, we preliminarily show that the method can retrieve semantically meaningful data from unknown and unpredictable images without any training or supervision. Low computational complexity of the method makes it a good candidate for scalable analysis of biological (e.g. zoological or botanical) visual databases.


Visual Word Biological Image Lassa Fever West Nile Fever Small Vocabulary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Chum, O., Perdoch, M., Matas, J.: Geometric min-hashing: Finding a (thick) needle in a haystack. In: Proc. IEEE Conf. CVPR 2009, pp. 17–24 (2009)Google Scholar
  2. 2.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proc. IEEE Conf. CVPR 2003, vol. 2, pp. 264–271 (2003)Google Scholar
  3. 3.
    Jegou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search. Int. J. Comp. Vision 87, 316–336 (2010)CrossRefGoogle Scholar
  4. 4.
    Kang, S.-H., Jeon, W., Lee, S.-H.: Butterly species identification by branch length similarity entropy. J. Asia-Pacific Entomology 15, 437–441 (2012)CrossRefGoogle Scholar
  5. 5.
    Lampert, C., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: Proc. IEEE Conf. CVPR 2009, pp. 951–958 (2009)Google Scholar
  6. 6.
    Lazebnik, S., Schmid, C., Ponce, J.: Semi-local affine parts for object recognition. In: Proc. BMVC 2004, pp. 779–788 (2004)Google Scholar
  7. 7.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Com. Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. Int. J. Comp. Vision 60, 63–86 (2004)CrossRefGoogle Scholar
  9. 9.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proc. IEEE Conf. CVPR 2007, pp. 1–8 (2007)Google Scholar
  10. 10.
    Romberg, S., August, M., Ries, C.X., Lienhart, R.: Robust feature bundling. In: Lin, W., Xu, D., Ho, A., Wu, J., He, Y., Cai, J., Kankanhalli, M., Sun, M.-T. (eds.) PCM 2012. LNCS, vol. 7674, pp. 45–56. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Silveira, M., Monteiro, A.: Automatic recognition and measurement of butterfly eyespot patterns. Biosystems 95, 130–136 (2009)CrossRefGoogle Scholar
  12. 12.
    Śluzek, A.: Large vocabularies for keypoint-based representation and matching of image patches. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012 Ws/Demos, Part I. LNCS, vol. 7583, pp. 229–238. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Stewénius, H., Gunderson, S.H., Pilet, J.: Size matters: Exhaustive geometric verification for image retrieval accepted for ECCV 2012. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 674–687. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Wu, Z., Ke, Q., Isard, M., Sun, J.: Bundling features for large scale partial-duplicate web image search. In: Proc. IEEE Conf. CVPR 2009, pp. 25–32 (2009)Google Scholar
  15. 15.
    Yang, K., Wang, M., Hua, X.-S., Yan, S., Zhang, H.-J.: Assemble new object detector with few examples. IEEE Im. Proc. 20, 3341–3349 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrzej Sluzek
    • 1
  1. 1.Khalifa UniversityAbu DhabiUnited Arab Emirates

Personalised recommendations