Study of Electric and Mechanic Properties of the Implanted Artificial Cardiac Tissue Using a Whole Heart Model

  • Sándor Miklos Szilágyi
  • László Szilágyi
  • Béat Hirsbrunner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8259)

Abstract

This study focuses on the effects of artificial cardiac tissue in the excitation-contraction process of the ventricular muscle. We developed a spatio-temporal computerized model of the whole heart that handles half millimeter sized compartments using 1 microsecond time step. We employed the effect of muscle fiber direction, laminar sheets, depolarization period and other parameters. The artificial tissue differs from the normal one in several ways, so their describing parameters are also modified. In our simulation the depolarization wave (DW) conduction speed of the artificial tissue was decreased by up to 3 times. In presence of a two centimeter wide and 2 mm thick artificial tissue slice, the maximal depolarization delay was 38 msec. Large ventricle size, low conducting speed and spaciousness of the injured ventricular tissue are the main generating factors of arrhythmia, while the location of the artificial tissue has secondary importance.

Keywords

ventricle modeling geometry estimation interpolation techniques 

References

  1. 1.
    Kofidis, T., Akhyari, P., Boublik, J., Theodorou, P., Martin, U., Ruhparwar, A., et al.: In vitro engineering of heart muscle: Artificial myocardial tissue. J. Thorac. Cardiov. Sur. 124, 63–69 (2002)CrossRefGoogle Scholar
  2. 2.
    Venugopal, J.R., Prabhakaran, M.P., Mukherjee, S., Ravichandran, R., Dan, K., Ramakrishna, S.: Biomaterial strategies for alleviation of myocardial infarction. J. R. Soc. Interface 9(66), 1–19 (2012)CrossRefGoogle Scholar
  3. 3.
    Heldman, A.W., Hare, J.M.: Cell therapy for myocardial infarction: Special delivery. J. Mol. Cell Cardiol. 44, 473–476 (2008)CrossRefGoogle Scholar
  4. 4.
    Robey, T.E., Saiget, M.K., Reinecke, H., Murry, C.E.: Systems approaches to preventing transplanted cell death in cardiac repair. J. Mol. Cell Cardiol. 45, 567–581 (2008)CrossRefGoogle Scholar
  5. 5.
    Jawad, H., Lyon, A.R., Harding, S.E., Ali, N.N., Boccaccini, A.R.: Myocardial tissue engineering. Brit. Med. Bull. 87, 31–47 (2008)CrossRefGoogle Scholar
  6. 6.
    Miyagawa, S., Roth, M., Saito, A., Sawa, Y., Kostin, S.: Tissue-engineered cardiac constructs for cardiac repair. Ann. Thorac. Surg. 91, 320–329 (2011)CrossRefGoogle Scholar
  7. 7.
    Radisic, M., Park, H., Gerecht, S., Cannizzaro, C., Langer, R., Vunjak-Novakovic, G.: Biomimetic approach to cardiac tissue engineering. Phil. Trans. R. Soc. B 362, 1357–1368 (2007)CrossRefGoogle Scholar
  8. 8.
    Hool, L.C.: Acute hypoxia differentially regulates K(+) channels. Implications with respect to cardiac arrhythmia. Eur. Biophys. J. 34, 369–376 (2005)Google Scholar
  9. 9.
    Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253, 544–560 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cherry, E.M., Fenton, F.H.: Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New J. Phys. 10, 125016 (2008)CrossRefGoogle Scholar
  11. 11.
    ten Tusscher, K.H.W.J., Bernus, O., Hren, R., Panfilov, A.V.: Comparison of electrophysiological models for human ventricular cells and tissues. Prog. Biophys. Mol. Bio. 90, 326–345 (2006)CrossRefGoogle Scholar
  12. 12.
    Szilágyi, S.M., Szilágyi, L., Benyó, Z.: A patient specific electro-mechanical model of the heart. Comput. Meth. Prog. Bio. 101, 183–200 (2011)CrossRefGoogle Scholar
  13. 13.
    Leor, J., Aboulafia-Etzion, S., Dar, A., Shapiro, L., Barbash, I.M., Battler, A., Granot, Y., Cohen, S.: Bioengineered cardiac grafts: A new approach to repair the infarcted myocardium? Circulation 102(III), 56–61 (2000)Google Scholar
  14. 14.
    Cherry, E.M., Greenside, H.S., Henriquez, C.S.: A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84, 1343–1346 (2000)CrossRefGoogle Scholar
  15. 15.
    Fast, V.G., Rohr, S., Gillis, A.M., Kleber, A.G.: Activation of cardiac tissue by extracellular electrical shocks: formation of ’secondary sources’ at intercellular clefts in monolayers of cultured myocytes. Circ. Res. 82, 375–385 (1998)CrossRefGoogle Scholar
  16. 16.
    Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential I. Simulations of ionic currents and concentration changes. Circ. Res. 74, 1071–1096 (1994)CrossRefGoogle Scholar
  17. 17.
    Luo, C.H., Rudy, Y.: A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circ. Res. 74, 1097–1113 (1994)CrossRefGoogle Scholar
  18. 18.
    Rădoiu, D., Enăchescu, C., Adjei, O.: A systematic approach to scientific visualization. Eng. Comput. 23, 898–906 (2006)CrossRefMATHGoogle Scholar
  19. 19.
    Enăchescu, C.: Neural networks for function approximation. In: Int. Conf. Bio-Inspired Comput. Meth. Used for Difficult Problem Solving (BICS 2008), pp. 84–89 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sándor Miklos Szilágyi
    • 1
    • 2
  • László Szilágyi
    • 3
  • Béat Hirsbrunner
    • 1
  1. 1.University of FribourgFribourgSwitzerland
  2. 2.Petru Maior University of Tîrgu-MureşRomania
  3. 3.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations