Current Trends in the Algebraic Image Analysis: A Survey

  • Igor Gurevich
  • Yulia Trusova
  • Vera Yashina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8258)

Abstract

Survey. The main goal of the Algebraic Approach is the design of a unified scheme for the representation of objects for the purposes of their recognition and the transformation of such representations in the suitable algebraic structures. It makes possible to develop corresponding regular structures ready for analysis by algebraic, geometrical and topological techniques. Development of this line of image analysis and pattern recognition is of crucial importance for automated image mining and application problems solving. It is selected and briefly characterized main aspects of current state of the image analysis algebraization. Special attention is paid to the recent results of the Russian mathematical school.

Keywords

Image analysis image algebras descriptive approach pattern recognition image representations 

References

  1. 1.
    Barrow, H.G., Ambler, A.P., Burstall, R.M.: Some Techniques for Recognizing Structures in Pictures. In: Watanabe, S. (ed.) Proceedings of the International Conference on Frontiers of Pattern Recognition, pp. 1–30. Academic Press (1972)Google Scholar
  2. 2.
    Beloozerov, V.N., Gurevich, I.B., Gurevich, N.G., Murashov, D.M., Trusova, Y.O.: Thesaurus for Image Analysis: Basic Version. In: Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications, vol. 13(4), pp. 556–569. Pleiades Publishing, Inc. (2003)Google Scholar
  3. 3.
    Bloehdorn, S., et al.: Semantic Annotation of Images and Videos for Multimedia Analysis. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 592–607. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chernov, V.M.: Clifford Algebras Are Group Algebras Projections. In: Bayro-Corrochano, E., Sobczyk, G. (eds.) Advances in Geometric Algebra with Applications in Science and Engineering, pp. 467–482. Birkhauser, Boston (2001)Google Scholar
  5. 5.
    Clouard, R., Renouf, A., Revenu, M.: An Ontology-Based Model for Representing Image Processing Application Objectives. International Journal of Pattern Recognition and Artificial Intelligence 24(8), 1181–1208 (2010)CrossRefGoogle Scholar
  6. 6.
    Colantonio, S., Gurevich, I., Pieri, G., Salvetti, O., Trusova, Y.: Ontology-Based Framework to Image Mining. In: Gurevich, I., Niemann, H., Salvetti, O. (eds.) Image Mining Theory and Applications: Proceedings of the 2nd International Workshop on Image Mining Theory and Applications (in conjunction with VISIGRAPP 2009), pp. 11–19. INSTICC Press, Lisboa (2009)Google Scholar
  7. 7.
    Crespo, J., Serra, J., Schaffer, R.W.: Graph-based Morphological Filtering and Segmentation. In: Proc. 6th Symp. Pattern Recognition and Image Analysis, Cordoba, pp. 80–87 (1995)Google Scholar
  8. 8.
    Crimmins, T., Brown, W.: Image Algebra and Automatic Shape Recognition. IEEE Transactions on Aerospace and Electronic Systems 21(1), 60–69 (1985)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Davidson, J.L.: Classification of Lattice Transformations in Image Processing. Computer Vision, Graphics, and Image Processing: Image Understanding 57(3), 283–306 (1993)CrossRefGoogle Scholar
  10. 10.
    Duff, M.J.B., Watson, D.M., Fountain, T.J., Shaw, G.K.: A Cellular Logic Array for Image Processing. Pattern Recognition 5(3), 229–247 (1973)CrossRefGoogle Scholar
  11. 11.
    Dougherty, E.R.: A Homogeneous Unification of Image Algebra. Part I: The Homogenous Algebra, part II: Unification of Image Algebra. Imaging Science 33(4), 136–143, 144–149 (1989)MathSciNetGoogle Scholar
  12. 12.
    Evans, T.G.: Descriptive Pattern Analysis Techniques: Potentialities and Problems. In: The Proceedings of the International Conference on Methodologies of Pattern Recognition, pp. 149–157. Academic Press (1969)Google Scholar
  13. 13.
    Furman, Y.A.: Parallel Recognition of Different Classes of Patterns. Pattern Recognition and Image Analysis 19(3), 380–393 (2009)CrossRefGoogle Scholar
  14. 14.
    Gurevich, I.B., Yashina, V.V.: Operations of Descriptive Image Algebras with One Ring. Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications 16(3), 298–328 (2006)CrossRefGoogle Scholar
  15. 15.
    Gurevich, I.B., Yashina, V.V.: Computer-Aided Image Analysis Based on the Concepts of Invariance and Equivalence. Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications 16(4), 564–589 (2006)CrossRefGoogle Scholar
  16. 16.
    Gurevich, I.B., Yashina, V.V.: Descriptive Approach to Image Analysis: Image Formalization Space. Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications 22(4), 495–518 (2012)CrossRefGoogle Scholar
  17. 17.
    Gader, P.D., Khabou, M.A., Koldobsky, A.: Morphological Regularization Neural Networks. Pattern Recognition 33, 935–944 (2000)CrossRefGoogle Scholar
  18. 18.
    Grenander, U.: Elements of Pattern Theory. The Johns Hopkins University Press (1996)Google Scholar
  19. 19.
    Haralick, R., Shapiro, L., Lee, J.: Morphological Edge Detection. IEEE J. Robotics and Automation RA-3(1), 142–157 (1987)Google Scholar
  20. 20.
    Kaneff, S.: Pattern Cognition and the Organization of Information. In: Watanabe, S. (ed.) The Proceedings of the International Conference on Frontiers of Pattern Recognition, pp. 193–222. Academic Press (1972)Google Scholar
  21. 21.
    Kirsh, R.: Computer Interpretation of English Text and Picture Patterns. IEEE-TEC  EC-13(4) (1964)Google Scholar
  22. 22.
    Labunec, V.G.: Algebraic Theory of Signals and Systems (Digital Signal Processing). Krasnoyarsk University (1984)Google Scholar
  23. 23.
    Maillot, N., Thonnat, M., Boucher, A.: Towards ontology-based cognitive vision. Machine Vision and Applications 16, 33–40 (2004)CrossRefGoogle Scholar
  24. 24.
    Maragos, P.: Algebraic and PDE Approaches for Lattice Scale-Spaces with Global Constraints. International Journal of Computer Vision 52(2/3), 121–137 (2003)CrossRefGoogle Scholar
  25. 25.
    Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)MATHGoogle Scholar
  26. 26.
    Matrosov, V.L.: The Capacity of Polynomial Expansions of a Set of Algorithms for Calculating Estimates. USSR, Comput. Maths. Math. Phys. 24(1), 79–87 (1985)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Mazurov, V.D., Khachai, M.Y.: Parallel Computations and Committee Constructions. Journal Automation and Remote Control 68(5), 912–921 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Miller, P.: Development of a Mathematical Structure for Image Processing: Optical division tech. report. Perkin-Elmer (1983)Google Scholar
  29. 29.
    Narasimhan, R.: Picture Languages. In: Kaneff, S. (ed.) Picture Language Machines, pp. 1–30. Academic Press (1970)Google Scholar
  30. 30.
    von Neumann, J.: The General Logical Theory of Automata. In: Celebral Mechenism in Behavior: The Hixon Symposium. John Wiley & Sons (1951)Google Scholar
  31. 31.
    Pavel, M.: Fundamentals of Pattern Recognition. Marcell, Dekker, Inc., New York (1989)MATHGoogle Scholar
  32. 32.
    Ritter, G.X.: Image Algebra. Center for computer vision and visualization, Department of Computer and Information science and Engineering, University of Florida, Gainesville, FL 32611 (2001)Google Scholar
  33. 33.
    Rosenfeld, A.: Digital Topology. American Math Monthly, 86 (1979)Google Scholar
  34. 34.
    Rosenfeld, A.: Picture Languages. Formal Models for Picture Recognition. Academic Press (1979)Google Scholar
  35. 35.
    Rudakov, K.V.: Universal and local constraints in the problem of correction of heuristic algorithms. Cybernetics 23(2), 181–186 (1987)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press (1982)Google Scholar
  37. 37.
    Shaw, A.: A Proposed Language for the Formal Description of Pictures. CGS Memo, 28, Stanford University (1967)Google Scholar
  38. 38.
    Schlesinger, M., Hlavac, V.: Ten Lectures on Statistical and Structural Pattern Recognition. In: Computational Imaging and Vision, vol. 24, 520 p. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  39. 39.
    Sternberg, S.R.: Grayscale Morphology. Computer Vision, Graphics and Image Processing 35(3), 333–355 (1986)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Sussner, P.: Observations on Morphological Associative Memories and the Kernel Method. Neurocomputing 31, 167–183 (2000)CrossRefGoogle Scholar
  41. 41.
    Town, C.: Ontological inference for image and video analysis. Machine Vision and Applications 17(2), 94–115 (2006)CrossRefGoogle Scholar
  42. 42.
    Unger, S.H.: A Computer Oriented Toward Spatial Problems. Proceedings of the IRE 46, 1744–1750 (1958)CrossRefGoogle Scholar
  43. 43.
    Zhuravlev, Y.I.: An Algebraic Approach to Recognition and Classification Problems. Pattern Recognition and Image Analysis: Advances in Mathematical Theory and Applications 8, 59–100 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Igor Gurevich
    • 1
  • Yulia Trusova
    • 1
  • Vera Yashina
    • 1
  1. 1.Dorodnicyn Computing CentreRussian Academy of SciencesMoscowThe Russian Federation

Personalised recommendations