Event Based Offline Signature Modeling Using Grid Source Probabilistic Coding

  • Konstantina Barkoula
  • Elias Zois
  • Evangelos Zervas
  • George Economou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8158)

Abstract

A new offline handwritten signature modeling is introduced that confluences disciplines from grid feature extraction and information theory. The proposed scheme advances further a previously reported feature extraction technique which exploits pixel transitions along the signature trace over predetermined two pixel paths. In this new work the feature components, partitioned in groups, are considered as events of a grid based discrete space probabilistic source. Based on the 16-ary FCB2 feature, a set of 87 orthogonal event schemes, organized in tetrads, is identified. Next an entropy rule is drawn in order to declare the most appropriate tetrad scheme for representing a writer’s signature. When skilled forgery is encountered verification results derived on both the GPDS300 dataset and a proprietary one, indicate enhanced EER rates compared to other approaches, including the previous reference of FCB2 as well.

Keywords

Signature Verification Grid Features Information Theory Events 

References

  1. 1.
    Impedovo, D., Pirlo, G.: Automatic signature verification: The state of the art. IEEE Transactions on Systems Man and Cybernetics 38, 609–635 (2008)CrossRefGoogle Scholar
  2. 2.
    Gonzalez, R.C., Woods, R.E.: Digital Image processing. Addison-Wesley (1992)Google Scholar
  3. 3.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. John Wiley & Sons (2000)Google Scholar
  4. 4.
    Ferrer, M., Alsono, J., Travieso, C.: Off-line geometric parameters for automatic signature verification using fixed point arithmetic. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 993–997 (2005)CrossRefGoogle Scholar
  5. 5.
    Chen, S., Srihari, S.: A new off-line signature verification method based on graph matching. In: Int. Conf. on Pattern Recognition, pp. 869–872. IEEE (2006)Google Scholar
  6. 6.
    Baltzakis, H., Papamarkos, N.: A new signature verification technique based on a two-stage neural network classifier. Engineering Applications of Artificial Intelligence 14, 95–103 (2001)CrossRefGoogle Scholar
  7. 7.
    Vargas, J.F., Ferrer, M.A., Travieso, C.M., Alonso, J.B.: Off-line signature verification based on grey level information using texture features. Pattern Recognition 44, 375–385 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Kumar, R., Sharma, J.D., Chanda, B.: Writer independent off-line signature verification using surroundedness feature. Pattern Recognition Letters 33, 301–308 (2012)CrossRefGoogle Scholar
  9. 9.
    Impedovo, D., Pirlo, G., Sarcinella, L., Stasolla, E., Trullo, C.A.: Analysis of Stability in Static Signatures using Cosine Similarity. In: Int. Conf. on Frontiers in Handwriting Recognition (ICFHR 2012), pp. 231–235. IEEE Press (2012)Google Scholar
  10. 10.
    Shekar, B.H., Bharathi, R.K.: LOG-Grid based off-line signature verification. In: Mohan, S., Kumar, S.S. (eds.) Fourth International Conference on Signal and Image Processing 2012. LNEE, vol. 222, pp. 321–330. Springer India (2013)Google Scholar
  11. 11.
    Swanepoel, J.P., Coester, J.: Off-line signature verification using flexible grid features and classifiers fusion. In: Int. Conf. on Frontiers in Handwriting Recognition (ICFHR 2012), pp. 297–302. IEEE Press (2012)Google Scholar
  12. 12.
    Kalera, M.K., Shrihari, S., Xu, A.: Offine line signature verification using distance statistics. Int. J. of Pattern Recognition and Artificial Intelligence, 1339–1360 (2005)Google Scholar
  13. 13.
    Gilperez, A., Alonso-Fernandez, F., Pecharroman, S., Fierrez-Aguilar, J., Ortega-Garcia, J.: Off-line signature verification using contour features. In: Int. Conf. on Frontiers in Handwriting Recognition, ICFHR 2008 (2008)Google Scholar
  14. 14.
    Parodi, M., Gomez, J.C., Belaid, A.: A circular grid-based rotation invariant feature extraction approach for off-line signature verification. In: 11th Int. Conf. on Document Analysis and Recognition, pp. 1289–1293. IEEE Press (2011)Google Scholar
  15. 15.
    Tselios, K., Zois, E.N., Siores, E., Nassiopoulos, A., Economou, G.: Grid-based feature distributions for off-line signature verification. IET Biometrics, 1–10 (2012)Google Scholar
  16. 16.
    Gray, R.M.: Entropy and information theory. Springer, New York (2013)Google Scholar
  17. 17.
    Otsu, N.: A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man and Cybernetics 6, 62–66 (1979)Google Scholar
  18. 18.
    Favata, J., Srikantan, G.: A multiple feature/resolution approach to handprinted digit and character recognition. Int. J. Imaging Syst. Technol. 7, 304–311 (1996)CrossRefGoogle Scholar
  19. 19.
    Impedovo, D., Pirlo, G., Sarcinella, L., Stasolla, E., Trullo, C.A.: Analysis of Stability in Static Signatures using Cosine Similarity. In: Int. Conf. on Frontiers in Handwriting Recognition (ICFHR 2012), pp. 231–235. IEEE Press (2012)Google Scholar
  20. 20.
    Hazewinkel, M.: Encyclopedia of Mathematics. Springer (2001)Google Scholar
  21. 21.
    Nguyen, V., Kawazoe, Y., Wakabayashi, T., Pal, U., Blumenstein, M.: Performance Analysis of the Gradient Feature and the Modified Direction Feature for Off-line Signature Verification. In: Int. Conf. on Frontiers in Handwriting Recognition, pp. 303–307 (2010)Google Scholar
  22. 22.
    Yilmaz, M.B., Yanikoglu, B., Tirkaz, C., Kholmatov, A.: Offline signature verification using classifier combination of HOG and LBP features. In: Proc. Int. J. Conf. Biometrics, pp. 1–7 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Konstantina Barkoula
    • 1
  • Elias Zois
    • 2
  • Evangelos Zervas
    • 2
  • George Economou
    • 1
  1. 1.Physics Dept.University of PatrasPatrasGreece
  2. 2.Electronics Dept.Technological Educational Institution of AthensAthensGreece

Personalised recommendations