Segmentation with Incremental Classifiers

  • Guillaume Bernard
  • Michel Verleysen
  • John A. Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

Radiotherapy treatment planning requires physicians to delineate the target volumes and organs at risk on 3D images of the patient. This segmentation task consumes a lot of time and can be partly automated with atlases (reference images segmented by experts). To segment any new image, the atlas is non-rigidly registered and the organ contours are then transferred. In practice, this approach suffers from the current limitations of non-rigid registration. We propose an alternative approach to extract and encode the physician’s expertise. It relies on a specific classification method that incrementally extracts information from groups of pixels in the images. The incremental nature of the process allows us to extract features that depend on partial classification results but also convey richer information. This paper is a first investigation of such an incremental scheme, illustrated with experiments on artificial images.

Keywords

Random Forest Class Label Active Contour Feature Ranking Radiotherapy Treatment Planning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection (1979)Google Scholar
  2. 2.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Optical Engineering-New York-Marcel Dekker Incorporated 34, 433–433 (1992)Google Scholar
  3. 3.
    Bondiau, P., Malandain, G., Chanalet, S., Marcy, P., Habrand, J., Fauchon, F., Paquis, P., Courdi, A., Commowick, O., Rutten, I., et al.: Atlas-based automatic segmentation of mr images: validation study on the brainstem in radiotherapy context. International Journal of Radiation Oncology* Biology* Physics 61(1), 289–298 (2005)CrossRefGoogle Scholar
  4. 4.
    Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(8), 1362–1374 (2009)CrossRefGoogle Scholar
  6. 6.
    Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)CrossRefMATHGoogle Scholar
  7. 7.
    Gould, S., Rodgers, J., Cohen, D., Elidan, G., Koller, D.: Multi-class segmentation with relative location prior. International Journal of Computer Vision 80(3), 300–316 (2008)CrossRefGoogle Scholar
  8. 8.
    Joachims, T.: Making large scale svm learning practical (1999)Google Scholar
  9. 9.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  10. 10.
    Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Transactions on Image Processing 15(11), 3531–3539 (2006)CrossRefGoogle Scholar
  11. 11.
    Otsu, N.: A threshold selection method from gray-level histograms. Automatica 11, 285–296 (1975)CrossRefGoogle Scholar
  12. 12.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Guillaume Bernard
    • 1
    • 2
  • Michel Verleysen
    • 2
  • John A. Lee
    • 1
    • 2
  1. 1.IRECMolecular Imaging, Radiotherapy, and OncologyBelgium
  2. 2.Machine Learning Group – ICTEAMUniversité catholique de LouvainBelgium

Personalised recommendations