A Graph-Based Method for PET Image Segmentation in Radiotherapy Planning: A Pilot Study

  • Alessandro Stefano
  • Salvatore Vitabile
  • Giorgio Russo
  • Massimo Ippolito
  • Daniele Sardina
  • Maria G. Sabini
  • Francesca Gallivanone
  • Isabella Castiglioni
  • Maria C. Gilardi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

Target volume delineation of Positron Emission Tomography (PET) images in radiation treatment planning is challenging because of the low spatial resolution and high noise level in PET data. The aim of this work is the development of an accurate and fast method for semi-automatic segmentation of metabolic regions on PET images. For this purpose, an algorithm for the biological tumor volume delineation based on random walks on graphs has been used. Validation was first performed on phantoms containing spheres and irregular inserts of different and known volumes, then tumors from a patient with head and neck cancer were segmented to discuss the clinical applicability of this algorithm. Experimental results show that the segmentation algorithm is accurate and fast and meets the physician requirements in a radiotherapy environment.

Keywords

Segmentation Graph PET Head and Neck cancer Radiotherapy 

References

  1. 1.
    Wahl, R.L., Jacene, H., Kasamon, Y., Lodge, M.A.: From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors. Journal of Nuclear Medicine 50, 122S–150S (2009)Google Scholar
  2. 2.
    Bagci, U., Yao, J., Caban, J., Turkbey, E., Aras, O., Mollura, D.J.: A graph-theoretic approach for segmentation of PET images. In: Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 8479–8482 (2011)Google Scholar
  3. 3.
    Grady, L.: Random walks for image segmentation. Ieee Transactions on Pattern Analysis and Machine Intelligence 28, 1768–1783 (2006)CrossRefGoogle Scholar
  4. 4.
    Schinagl, D.A.X., Vogel, W.V., Hoffmann, A.L., Van Dalen, J.A., Oyen, W.J., Kaanders, J.H.A.M.: Comparison of five segmentation tools for 18 F-FLUORO-DEOXYGLUCOSE-POSITRON emission tomography-based target volume definition in head and neck cancer. International Journal of Radiation Oncology Biology Physics 69, 1282–1289 (2007)CrossRefGoogle Scholar
  5. 5.
    Zaidi, H., El Naqa, I.: PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. European Journal of Nuclear Medicine and Molecular Imaging 37, 2165–2187 (2010)CrossRefGoogle Scholar
  6. 6.
    Kao, C.-H., Hsieh, T.-C., Yu, C.-Y., Yen, K.-Y., Yang, S.-N., Wang, Y.-C., Liang, J.-A., Chien, C.-R., Chen, S.-W.: F-18-FDG PET/CT-based gross tumor volume definition for radiotherapy in head and neck Cancer: a correlation study between suitable uptake value threshold and tumor parameters. Radiation Oncology 5 (2010)Google Scholar
  7. 7.
    Wanet, M., Lee, J.A., Weynand, B., De Bast, M., Poncelet, A., Lacroix, V., Coche, E., Gregoire, V., Geets, X.: Gradient-based delineation of the primary GTV on FDG-PET in non-small cell lung cancer: A comparison with threshold-based approaches, CT and surgical specimens. Radiotherapy and Oncology 98, 117–125 (2011)CrossRefGoogle Scholar
  8. 8.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. Ieee Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)CrossRefGoogle Scholar
  9. 9.
    Bettinardi, V., Mancosu, P., Danna, M., Giovacchini, G., Landoni, C., Picchio, M., Gilardi, M.C., Savi, A., Castiglioni, I., Lecchi, M., Fazio, F.: Two-dimensional vs three-dimensional imaging in whole body oncologic PET/CT: a Discovery-STE phantom and patient study. Quarterly Journal of Nuclear Medicine and Molecular Imaging 51, 214–223Google Scholar
  10. 10.
    Han, D., Bayouth, J., Song, Q., Taurani, A., Sonka, M., Buatti, J., Wu, X.: Globally optimal tumor segmentation in PET-CT images: a graph-based co-segmentation method. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 245–256. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Parker, B.J., Feng, D.G.: Graph-based Mumford-Shah segmentation of dynamic PET with application to input function estimation. Ieee Transactions on Nuclear Science 52, 79–89Google Scholar
  12. 12.
    Tylski, P., Stute, S., Grotus, N., Doyeux, K., Hapdey, S., Gardin, I., Vanderlinden, B., Buvat, I.: Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in F-18-FDG PET. Journal of Nuclear Medicine 51, 268–276Google Scholar
  13. 13.
    Soret, M., Bacharach, S.L., Buvat, I.: Partial-volume effect in PET tumor imaging. Journal of Nuclear Medicine 48, 932–945 (2007)CrossRefGoogle Scholar
  14. 14.
    Gallivanone, F., Stefano, A., Grosso, E., Canevari, C., Gianolli, L., Messa, C., Gilardi, M.C., Castiglioni, I.: PVE Correction in PET-CT Whole-Body Oncological Studies From PVE-Affected Images. Ieee Transactions on Nuclear Science 58, 736–747 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alessandro Stefano
    • 1
    • 2
  • Salvatore Vitabile
    • 3
  • Giorgio Russo
    • 2
  • Massimo Ippolito
    • 4
  • Daniele Sardina
    • 5
  • Maria G. Sabini
    • 5
  • Francesca Gallivanone
    • 6
  • Isabella Castiglioni
    • 6
  • Maria C. Gilardi
    • 6
    • 7
  1. 1.Dipartimento di Ingegneria InformaticaUniversity of PalermoPalermoItaly
  2. 2.IBFM CNR - LATOCefalùItaly
  3. 3.Dipartimento di Biopatologia e Biotecnologie Mediche e ForensiUniversity of PalermoPalermoItaly
  4. 4.Nuclear Medicine DepartmentCannizzaro HospitalCataniaItaly
  5. 5.Medical Physics UnitCannizzaro HospitalCataniaItaly
  6. 6.IBFM CNRSegrateItaly
  7. 7.University of Milano-BicoccaMilanoItaly

Personalised recommendations