A Virtually Continuous Representation of the Deep Structure of Scale-Space

  • Luigi Rocca
  • Enrico Puppo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)

Abstract

The deep structure of scale-space of a signal refers to tracking the zero-crossings of differential invariants across scales. In classical approaches, feature tracking is performed by neighbor search between consecutive levels of a discrete collection of scales. Such an approach is prone to noise and tracking errors and provides just a coarse representation of the deep structure. We propose a new approach that allows us to construct a virtually continuous scale-space for scalar functions, supporting reliable tracking and a fine representation of the deep structure of their critical points. Our approach is based on a piecewise-linear approximation of the scale-space, in both space and scale dimensions. We present results on terrain data and range images.

Keywords

scale-space multi-scale analysis topology of scalar fields 

References

  1. 1.
    Bauer, D., Peikert, R.: Vortex tracking in scale-space. In: Proceedings of the Symposium on Data Visualisation, VISSYM 2002, p. 233. Eurographics Association, Aire-la-Ville (2002)Google Scholar
  2. 2.
    Correa, C., Ma, K.L.: Size-based transfer functions: A new volume exploration technique. IEEE Trans. Visualization and Computer Graphics 14, 1380–1387 (2008)CrossRefGoogle Scholar
  3. 3.
    de Ferranti, J.: Viewfinder panoramas (2012), http://www.viewfinderpanoramas.org/dem3.html
  4. 4.
    Gingold, Y.I., Zorin, D.: Controlled-topology filtering. Comput. Aided Des. 39(8), 676–684 (2007)CrossRefGoogle Scholar
  5. 5.
    Gupta, S., Castleman, K., Markey, M., Bovik, A.: Texas 3d face recognition database. In: 2010 IEEE Southwest Symposium on Image Analysis Interpretation (SSIAI), pp. 97–100 (2010)Google Scholar
  6. 6.
    Kindlmann, G.L., Estepar, R.S.J., Smith, S.M., Westin, C.F.: Sampling and visualizing creases with scale-space particles. IEEE Trans. Visualization and Computer Graphics 15(6), 1415–1424 (2009)CrossRefGoogle Scholar
  7. 7.
    Klein, T., Ertl, T.: Scale-space tracking of critical points in 3d vector fields. In: Topology-based Methods in Visualization, Mathematics and Visualization, pp. 35–50. Springer (2007)Google Scholar
  8. 8.
    Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer Academic Publishers (1994)Google Scholar
  10. 10.
    Price, K.: Annotated computer vision bibliography, http://www.visionbib.com/bibliography/contents.html
  11. 11.
    Reininghaus, J., Kotava, N., Guenther, D., Kasten, J., Hagen, H., Hotz, I.: A scale space based persistence measure for critical points in 2d scalar fields. IEEE Trans. Visualization and Computer Graphics 17(12), 2045–2052 (2011)CrossRefGoogle Scholar
  12. 12.
    Witkin, A.P.: Scale-space filtering. In: Proc. 8th Int. Joint Conf. Art. Intell., pp. 1019–1022. Karlsruhe, Germany (1983)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luigi Rocca
    • 1
  • Enrico Puppo
    • 1
  1. 1.Department of Informatics, Bio-engineering, Robotics and System EngineeringUniversity of GenovaGenovaItaly

Personalised recommendations