Wide Area Camera Localization

  • Valeria Garro
  • Maurizio Galassi
  • Andrea Fusiello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

In this paper we describe a mobile camera localization system that is able to accurately estimate the pose of an hand-held camera inside a known urban environment. The work leverages on a pre-computed 3D structure obtained by a hierarchical Structure from Motion pipeline to compute the 2D-3D correspondences needed to orient the camera. The hierarchical cluster structure, given by the SfM, guides the localization process providing accurate and reliable features matching. Experiments in outdoor challenging environments demonstrate the effectiveness of the method compared to a standard image retrieval approach.

Keywords

Localization Camera pose Structure from motion 

References

  1. 1.
    Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3d. In: SIGGRAPH: International Conference on Computer Graphics and Interactive Techniques, pp. 835–846 (2006)Google Scholar
  2. 2.
    Frahm, J.-M., et al.: Building rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Snavely, N., Seitz, S., Szeliski, R.: Skeletal graphs for efficient structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)Google Scholar
  4. 4.
    Farenzena, M., Fusiello, A., Gherardi, R.: Structure-and-motion pipeline on a hierarchical cluster tree. In: IEEE International Workshop on 3-D Digital Imaging and Modeling, pp. 1489–1496 (2009)Google Scholar
  5. 5.
    Gherardi, R., Farenzena, M., Fusiello, A.: Improving the efficiency of hierarchical structure-and-motion. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1594–1600 (June 2010)Google Scholar
  6. 6.
    Irschara, A., Zach, C., Frahm, J., Bischof, H.: From structure-from-motion point clouds to fast location recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2599–2606 (2009)Google Scholar
  7. 7.
    Arth, C., Wagner, D., Klopschitz, M., Irschara, A., Schmalstieg, D.: Wide area localization on mobile phones. In: 8th IEEE International Symposium on Mixed and Augmented Reality, pp. 73–82 (2009)Google Scholar
  8. 8.
    Li, Y., Snavely, N., Huttenlocher, D.P.: Location recognition using prioritized feature matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part II. LNCS, vol. 6312, pp. 791–804. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Sattler, T., Leibe, B., Kobbelt, L.: Fast image-based localization using direct 2d-to-3d matching. In: International Conference on Computer Vision, pp. 667–674 (2011)Google Scholar
  10. 10.
    Li, Y., Snavely, N., Huttenlocher, D., Fua, P.: Worldwide pose estimation using 3D point clouds. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 15–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: International Conference on Computer Vision, pp. 1470–1477 (2003)Google Scholar
  13. 13.
    Yang, J., Jiang, Y.G., Hauptmann, A.G., Ngo, C.W.: Evaluating bag-of-visual-words representations in scene classification. In: International Workshop on Multimedia Information Retrieval, pp. 197–206 (2007)Google Scholar
  14. 14.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  15. 15.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Conference on Computer Vision and Pattern Recognition, pp. 2161–2168 (2006)Google Scholar
  16. 16.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  17. 17.
    Moreno-Noguer, F., Lepetit, V., Fua, P.: Accurate non-iterative o(n) solution to the pnp problem. In: Proceeding of the IEEE International Conference on Computer Vision (October 2007)Google Scholar
  18. 18.
    Fiore, P.D.: Efficient linear solution of exterior orientation. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(2), 140–148 (2001)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Schweighofer, G., Pinz, A.: Globally optimal o(n) solution to the pnp problem for general camera models. In: British Machine Vision Conference, pp. 55.1–55.10 (2008)Google Scholar
  20. 20.
    Garro, V., Crosilla, F., Fusiello, A.: Solving the pnp problem with anisotropic orthogonal procrustes analysis. In: Second Joint 3DIM/3DPVT Conference: 3D Imaging, Modeling, Processing, Visualization and Transmission (2012)Google Scholar
  21. 21.
    Bennani Dosse, M., Ten Berge, J.: Anisotropic orthogonal procrustes analysis. Journal of Classification 27(1), 111–128 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Torr, P.H.S., Zisserman, A.: MLESAC: A new robust estimator with application to estimating image geometry. In: Computer Vision and Image Understanding, vol. 78 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Valeria Garro
    • 1
  • Maurizio Galassi
    • 1
  • Andrea Fusiello
    • 2
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Department of Electrical, Mechanical and Management EngineeringUniversity of UdineUdineItaly

Personalised recommendations