Human-Computer Interaction and Knowledge Discovery (HCI-KDD): What Is the Benefit of Bringing Those Two Fields to Work Together?
Abstract
A major challenge in our networked world is the increasing amount of data, which require efficient and user-friendly solutions. A timely example is the biomedical domain: the trend towards personalized medicine has resulted in a sheer mass of the generated (-omics) data. In the life sciences domain, most data models are characterized by complexity, which makes manual analysis very time-consuming and frequently practically impossible. Computational methods may help; however, we must acknowledge that the problem-solving knowledge is located in the human mind and - not in machines. A strategic aim to find solutions for data intensive problems could lay in the combination of two areas, which bring ideal pre-conditions: Human-Computer Interaction (HCI) and Knowledge Discovery (KDD). HCI deals with questions of human perception, cognition, intelligence, decision-making and interactive techniques of visualization, so it centers mainly on supervised methods. KDD deals mainly with questions of machine intelligence and data mining, in particular with the development of scalable algorithms for finding previously unknown relationships in data, thus centers on automatic computational methods. A proverb attributed perhaps incorrectly to Albert Einstein illustrates this perfectly: “Computers are incredibly fast, accurate, but stupid. Humans are incredibly slow, inaccurate, but brilliant. Together they may be powerful beyond imagination”. Consequently, a novel approach is to combine HCI & KDD in order to enhance human intelligence by computational intelligence.
Keywords
Human-Computer Interaction (HCI) Knowledge Discovery in Data (KDD) HCI-KDD E-Science Interdisciplinary Intersection scienceReferences
- 1.Kouzes, R.T., Anderson, G.A., Elbert, S.T., Gorton, I., Gracio, D.K.: The changing paradigm of data-intensive computing. Computer 42, 26–34 (2009)CrossRefGoogle Scholar
- 2.Hey, T., Gannon, D., Pinkelman, J.: The Future of Data-Intensive Science. Computer 45, 81–82 (2012)CrossRefGoogle Scholar
- 3.Bell, G., Hey, T., Szalay, A.: Beyond the data deluge. Science 323, 1297–1298 (2009)CrossRefGoogle Scholar
- 4.Buxton, B., Hayward, V., Pearson, I., Kärkkäinen, L., Greiner, H., Dyson, E., Ito, J., Chung, A., Kelly, K., Schillace, S.: Big data: the next Google. Interview by Duncan Graham-Rowe. Nature 455, 8 (2008)CrossRefGoogle Scholar
- 5.Holzinger, A.: On Knowledge Discovery and Interactive Intelligent Visualization of Biomedical Data - Challenges in Human–Computer Interaction & Biomedical Informatics. In: DATA 2012, pp. IS9–IS20. INSTICC, Rome (2012)Google Scholar
- 6.Holzinger, A.: Weakly Structured Data in Health-Informatics: The Challenge for Human-Computer Interaction. In: Baghaei, N., Baxter, G., Dow, L., Kimani, S. (eds.) Proceedings of INTERACT 2011 Workshop: Promoting and Supporting Healthy Living by Design, Lisbon, Portugal. IFIP, pp. 5–7 (2011)Google Scholar
- 7.Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A., Hofmann-Wellenhof, R.: Combining HCI, Natural Language Processing, and Knowledge Discovery - Potential of IBM Content Analytics as an assistive technology in the biomedical field. In: Holzinger, A., Pasi, G. (eds.) HCI-KDD 2013. LNCS, vol. 7947, pp. 13–24. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 8.Holzinger, A.: Biomedical Informatics: Computational Sciences meets Life Sciences. BoD, Norderstedt (2012)Google Scholar
- 9.Akil, H., Martone, M.E., Van Essen, D.C.: Challenges and opportunities in mining neuroscience data. Science 331, 708–712 (2011)CrossRefGoogle Scholar
- 10.Dugas, M., Schmidt, K.: Medizinische Informatik und Bioinformatik. Springer, Heidelberg (2003)CrossRefGoogle Scholar
- 11.Polanyi, M.: Personal Knowledge: Towards a Post-Critical Philosophy. Nature Publishing Group (1974)Google Scholar
- 12.Popper, K.R.: Alles Leben ist Problemlösen. Piper, München (1996)Google Scholar
- 13.Naur, P.: Computing versus human thinking. Communications of the ACM 50, 85–94 (2007)CrossRefGoogle Scholar
- 14.Naur, P.: The neural embodiment of mental life by the synapse-state theory. Naur. Com Publishing (2008)Google Scholar
- 15.Shneiderman, B.: Inventing Discovery Tools: Combining Information Visualization with Data Mining. In: Jantke, K.P., Shinohara, A. (eds.) DS 2001. LNCS (LNAI), vol. 2226, pp. 17–28. Springer, Heidelberg (2001)CrossRefGoogle Scholar
- 16.Shneiderman, B.: Inventing Discovery Tools: Combining Information Visualization with Data Mining. Information Visualization 1, 5–12 (2002)Google Scholar
- 17.Shneiderman, B.: Creativity support tools. Communications of the ACM 45, 116–120 (2002)CrossRefGoogle Scholar
- 18.Shneiderman, B.: Creativity support tools: accelerating discovery and innovation. Communications of the ACM 50, 20–32 (2007)CrossRefGoogle Scholar
- 19.Butler, D.: 2020 computing: Everything, everywhere. Nature 440, 402–405 (2006)CrossRefGoogle Scholar
- 20.Simon, H.A.: Designing Organizations for an Information-Rich World. In: Greenberger, M. (ed.) Computers, Communication, and the Public Interest, pp. 37–72. The Johns Hopkins Press, Baltimore (1971)Google Scholar
- 21.Holzinger, A.: Interacting with Information: Challenges in Human-Computer Interaction and Information Retrieval (HCI-IR). In: IADIS Multiconference on Computer Science and Information Systems (MCCSIS), Interfaces and Human-Computer Interaction, pp. 13–17. IADIS, Rome (2011)Google Scholar
- 22.Holzinger, A.: Successful Management of Research and Development. BoD, Norderstedt (2011)Google Scholar
- 23.Von Neumann, J.: The Computer and the Brain. Yale University Press, New Haven (1958)MATHGoogle Scholar
- 24.Card, S.K., Moran, T.P., Newell, A.: The psychology of Human-Computer Interaction. Erlbaum, Hillsdale (1983)Google Scholar
- 25.Helander, M. (ed.): Handbook of Human-Computer Interaction. North Holland, Amsterdam (1990)Google Scholar
- 26.Holzinger, A.: Multimedia Basics. Learning. Cognitive Basics of Multimedia Information Systems, vol. 2. Laxmi-Publications, New Delhi (2002)Google Scholar
- 27.Ebert, A., Gershon, N., Veer, G.: Human-Computer Interaction. Künstl. Intell. 26, 121–126 (2012)CrossRefGoogle Scholar
- 28.Hooper, C.J., Dix, A.: Web science and human-computer interaction: forming a mutually supportive relationship. Interactions 20, 52–57 (2013)CrossRefGoogle Scholar
- 29.Keim, D., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual Analytics: Scope and Challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)CrossRefGoogle Scholar
- 30.Shneiderman, B.: The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations. In: Proceedings of the 1996 IEEE Symposium on Visual Languages, pp. 336–343 (1996)Google Scholar
- 31.Keim, D., Kohlhammer, J., Ellis, G., Mansmann, F. (eds.): Mastering the Information Age: Solving Problems with Visual Analytics. Eurographics, Goslar (2010)Google Scholar
- 32.Van Wijk, J.J.: The value of visualization. In: Visualization, VIS 2005, pp. 79–86. IEEE (2005)Google Scholar
- 33.Dervin, B.: Sense-making theory and practice: an overview of user interests in knowledge seeking and use. J. Knowl. Manag. 2, 36–46 (1998)CrossRefGoogle Scholar
- 34.Beale, R.: Supporting serendipity: Using ambient intelligence to augment user exploration for data mining and Web browsing. International Journal of Human-Computer Studies 65, 421–433 (2007)CrossRefGoogle Scholar
- 35.Holzinger, A., Kickmeier-Rust, M., Albert, D.: Dynamic Media in Computer Science Education; Content Complexity and Learning Performance: Is Less More? Educational Technology & Society 11, 279–290 (2008)Google Scholar
- 36.Ceglar, A., Roddick, J., Calder, P.: Chapter 4: Guiding Knowledge Discovery through Interactive Data Mining. In: Pendharkar, P. (ed.) Managing Data Mining Technologies in Organizations: Techniques and Applications, pp. 45–86. Idea Group Publishing, Hershey (2003)Google Scholar
- 37.Chau, D.H., Myers, B., Faulring, A.: What to do when search fails: finding information by association. In: Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems, pp. 999–1008. ACM, Florence (2008)CrossRefGoogle Scholar
- 38.Shiffrin, R.M., Gardner, G.T.: Visual Processing Capacity and Attention Control. Journal of Experimental Psychology 93, 72 (1972)CrossRefGoogle Scholar
- 39.Kahneman, D.: Attention and Effort. Prentice-Hall, Englewood Cliffs (1973)Google Scholar
- 40.Duncan, J.: Selective attention and the organization of visual information. Journal of Experimental Psychology: General 113, 501–517 (1984)CrossRefGoogle Scholar
- 41.Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. ACM Computing Surveys 41 (2009)Google Scholar
- 42.Holzinger, A., Kickmeier-Rust, M.D., Wassertheurer, S., Hessinger, M.: Learning performance with interactive simulations in medical education: Lessons learned from results of learning complex physiological models with the HAEMOdynamics SIMulator. Computers & Education 52, 292–301 (2009)CrossRefGoogle Scholar
- 43.Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Interaction. Wiley, Chichester (2010)Google Scholar
- 44.Cairns, P., Cox, A.L. (eds.): Research Methods for Human-Computer Interaction. Cambridge University Press, Cambridge (2008)Google Scholar
- 45.Nestor, P.G., Schutt, R.K.: Research Methods in Psychology: Investigating Human Behavior. Sage Publications (2011)Google Scholar
- 46.Maimon, O., Rokach, L. (eds.): Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer, Heidelberg (2010)MATHGoogle Scholar
- 47.Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical machine learning tools and techniques. Morgan Kaufmann, San Francisco (2011)Google Scholar
- 48.Piatetsky-Shapiro, G.: Knowledge discovery in databases: 10 years after. ACM SIGKDD Explorations Newsletter 1, 59–61 (2000)CrossRefGoogle Scholar
- 49.Blum, R.L., Wiederhold, G.C.: Studying hypotheses on a time-oriented clinical database: an overview of the RX project. In: Computer-Assisted Medical Decision Making, pp. 245–253. Springer (1985)Google Scholar
- 50.Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM 39, 27–34 (1996)CrossRefGoogle Scholar
- 51.Piateski, G., Frawley, W.: Knowledge discovery in databases. MIT Press, Cambridge (1991)Google Scholar
- 52.Cios, J., Pedrycz, W., Swiniarski, R.: Data Mining in Knowledge Discovery. Academic Publishers (1998)Google Scholar
- 53.Liu, H., Motoda, H.: Feature selection for knowledge discovery and data mining. Springer, Heidelberg (1998)MATHCrossRefGoogle Scholar
- 54.Fayyad, U.M., Wierse, A., Grinstein, G.G.: Information visualization in data mining and knowledge discovery. Morgan Kaufmann Pub. (2002)Google Scholar
- 55.Billinger, M., Brunner, C., Scherer, R., Holzinger, A., Müller-Putz, G.: Towards a framework based on single trial connectivity for enhancing knowledge discovery in BCI. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 658–667. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 56.Holzinger, A., Scherer, R., Seeber, M., Wagner, J., Müller-Putz, G.: Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds.) ITBAM 2012. LNCS, vol. 7451, pp. 166–168. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 57.Holzinger, A., Stocker, C., Peischl, B., Simonic, K.-M.: On Using Entropy for Enhancing Handwriting Preprocessing. Entropy 14, 2324–2350 (2012)CrossRefGoogle Scholar
- 58.Holzinger, A., Stocker, C., Bruschi, M., Auinger, A., Silva, H., Gamboa, H., Fred, A.: On Applying Approximate Entropy to ECG Signals for Knowledge Discovery on the Example of Big Sensor Data. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 646–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 59.Petz, G., Karpowicz, M., Fürschuß, H., Auinger, A., Winkler, S.M., Schaller, S., Holzinger, A.: On text preprocessing for opinion mining outside of laboratory environments. In: Huang, R., Ghorbani, A.A., Pasi, G., Yamaguchi, T., Yen, N.Y., Jin, B. (eds.) AMT 2012. LNCS, vol. 7669, pp. 618–629. Springer, Heidelberg (2012)CrossRefGoogle Scholar
- 60.Petz, G., Karpowicz, M., Fürschuß, H., Auinger, A., Stříteský, V., Holzinger, A.: Opinion Mining on the Web 2.0 – Characteristics of User Generated Content and Their Impacts. In: Holzinger, A., Pasi, G. (eds.) HCI-KDD 2013. LNCS, vol. 7947, pp. 35–46. Springer, Heidelberg (2013)CrossRefGoogle Scholar
- 61.Holzinger, A., Zupan, M.: KNODWAT: A scientific framework application for testing knowledge discovery methods for the biomedical domain. BMC Bioinformatics 14, 191 (2013)CrossRefGoogle Scholar
- 62.Holzinger, A.: Process Guide for Students for Interdisciplinary Work in Computer Science/Informatics, 2nd edn. BoD, Norderstedt (2010)Google Scholar
- 63.Mobjörk, M.: Consulting versus participatory transdisciplinarity: A refined classification of transdisciplinary research. Futures 42, 866–873 (2010)CrossRefGoogle Scholar
- 64.Wickson, F., Carew, A.L., Russell, A.W.: Transdisciplinary research: characteristics, quandaries and quality. Futures 38, 1046–1059 (2006)CrossRefGoogle Scholar
- 65.Lawrence, R.J., Després, C.: Futures of Transdisciplinarity. Futures 36, 397–405 (2004)CrossRefGoogle Scholar
- 66.
- 67.Funk, P., Xiong, N.: Case-based reasoning and knowledge discovery in medical applications with time series. Comput. Intell. 22, 238–253 (2006)MathSciNetCrossRefGoogle Scholar