Advertisement

On the Implementation of Unified Arithmetic on Binary Huff Curves

  • Santosh Ghosh
  • Amit Kumar
  • Amitabh Das
  • Ingrid Verbauwhede
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8086)

Abstract

Unified formula for computing elliptic curve point addition and doubling are considered to be resistant against simple power-analysis attack. A new elliptic curve formula known as unified binary Huff curve in this regard has appeared into the literature in 2011. This paper is devoted to analyzing the applicability of this elliptic curve in practice. Our paper has two contributions. We provide an efficient implementation of the unified Huff formula in projective coordinates on FPGA. Secondly, we point out its side-channel vulnerability and show the results of an actual attack. It is claimed that the formula is unified and there will be no power consumption difference when computing point addition and point doubling operations, observable with simple power analysis (SPA). In this paper, we contradict their claim showing actual SPA results on a FPGA platform and propose a modified arithmetic and its suitable implementation technique to overcome the vulnerability.

Keywords

Elliptic curves Binary fields Side-channel FPGA Karatsuba multiplier Power analysis SPA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azarderakhsh, R., Reyhani-Masoleh, A.: Efficient FPGA Implementations of Point Multiplication on Binary Edwards and Generalized Hessian Curves Using Gaussian Normal Basis. IEEE Trans. on VLSI Systems 20(8), 1453–1466 (2012)CrossRefGoogle Scholar
  2. 2.
    Bernstein, D.J., Lange, T., Rezaeian Farashahi, R.: Binary Edwards Curves. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 244–265. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Bernstein, D.J.: Batch binary Edwards. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 317–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Brier, É., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Brier, É., Déchène, I., Joye, M.: Unified point addition formulæ for elliptic curve cryptosystems. In: Embedded Cryptographic Hardware: Methodologies and Architectures, pp. 247–256. Nova Science Publishers (2004)Google Scholar
  6. 6.
    Chatterjee, A., Sengupta, I.: FPGA implementation of Binary edwards curve using ternary representation. In: GLSVLSI 2011, pp. 73–78 (2011)Google Scholar
  7. 7.
    Chatterjee, A., Sengupta, I.: High-speed unified elliptic curve cryptosystem on FPGAs using binary Huff curves. In: Rahaman, H., Chattopadhyay, S., Chattopadhyay, S. (eds.) VDAT 2012. LNCS, vol. 7373, pp. 243–251. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Devigne, J., Joye, M.: Binary huff curves. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 340–355. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Farashahi, R.R., Joye, M.: Efficient Arithmetic on Hessian Curves. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 243–260. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Huff, G.B.: Diophantine problems in geometry and elliptic ternary forms. Duke Math. J. 15, 443–453 (1948)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Izu, T., Takagi, T.: Exceptional procedure attack on elliptic curve cryptosystems. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 224–239. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Joye, M., Quisquater, J.-J.: Hessian elliptic curves and side-channel attacks. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 402–410. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Joye, M., Yen, S.M.: The Montgomery powering ladder. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Joye, M., Tibouchi, M., Vergnaud, D.: Huff’s model for elliptic curves. In: Hanrot, G., Morain, F., Thomé, E. (eds.) ANTS-IX 2010. LNCS, vol. 6197, pp. 234–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    López, J., Dahab, R.: Fast multiplication on elliptic curves over GF(2m) without precomputation. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 316–327. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Rebeiro, C., Mukhopadhyay, D.: High speed compact elliptic curve cryptoprocessor for FPGA platforms. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 376–388. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Stebila, D., Thériault, N.: Unified point addition formulæ and side-channel attacks. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 354–368. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Side-channel attack standard evaluation board, http://www.morita-tech.co.jp/SASEBO/en/board/sasebo-g.html
  20. 20.
    Walter, C.D.: Simple power analysis of unified code for ECC double and add. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 191–204. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: A countermeasure against one physical cryptanalysis may benefit another attack. In: Kim, K.-C. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 414–427. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Santosh Ghosh
    • 1
  • Amit Kumar
    • 2
  • Amitabh Das
    • 3
  • Ingrid Verbauwhede
    • 3
  1. 1.Security Center of Excellence (SeCoE)Intel CorporationHillsboroUSA
  2. 2.Department of Electrical EngineeringIndian Institute of Technology KharagpurIndia
  3. 3.COSIC-SCD/ESATKU Leuven & iMindsHeverleeBelgium

Personalised recommendations