Rationales of Holonic Manufacturing Systems in Leather Industry

  • Sergiu-Adrian Guţă
  • Ioan Dumitrache
  • Duncan McFarlane
  • Tariq Masood
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8062)


This paper presents an insight into leather manufacturing processes, depicting peculiarities and challenges faced by leather industry. An analysis of this industry reveals the need for a new approach to optimize the productivity of leather processing operations, ensure consistent quality of leather, mitigate the adverse health effects in tannery workers exposed to chemicals and comply with environmental regulation. Holonic manufacturing systems (HMS) paradigm represent a bottom-up distributed approach that provides stability, adaptability, efficient use of resources and a plug and operate functionality to the manufacturing system. A vision of how HMS might operate in a tannery is illustrated presenting the rationales behind its application in this industry.


leather industry leather processing holonic manufacturing multi-agent systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nokes, K.: Modern leather manufacturing,
  2. 2.
    Brugnoli, F.: Social and Environmental Report on the European tanning industry, Bucharest (2012)Google Scholar
  3. 3.
    Thanikaivelan, P., Rao, J.R., Nair, B.U., Ramasami, T.: Recent Trends in Leather Making: Processes, Problems, and Pathways. Critical Reviews in Environmental Science and Technology 35, 37–79 (2005)CrossRefGoogle Scholar
  4. 4.
    Hanchevici, A.B., Guta, S.A.: Supervised multi-agent control of leather manufacturing processes by using the fuzzy logic. Leather and Footwear Journal 12, 101–112 (2012)Google Scholar
  5. 5.
    Panda, R.C., Rao, P.G.: Chemical Engineering Applications on Unit Operations of Tanning Industry–Case Studies. International Journal of Chemical Engineering and Applications 2, 112–116 (2011)CrossRefGoogle Scholar
  6. 6.
    Deselnicu, V., Badea, N., Maier, S.S., Deselnicu, D.C.: Change through innovation. Part 1. Changing of leathers’ tanning system. In: Rusu, C. (ed.) Management of Technological Changes, Book 1, pp. 191–198. Technical Univ. Crete, Liason Office, Univ. Campus, Kounoupidiana, Chania, 73100, Greece (2003)Google Scholar
  7. 7.
    Puigjaner, L., Espuña, A., Santos, G., Graells, M.: Batch Processing in Textile and Leather Industries. In: Reklaitis, G., Sunol, A., Rippin, D.T., Hortaçsu, Ö. (eds.) Batch Processing Systems Engineering, pp. 808–820. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  8. 8.
    Covington, A.D.: Prediction in Leather Processing: A Dark Art or a Clear Possibility? Procter Memorial Lecture. Journal of the Society of Leather Technologists and Chemists 95, 231–242 (2011)Google Scholar
  9. 9.
    Babiceanu, R., Chen, F.: Development and applications of holonic manufacturing systems: a survey. Journal of Intelligent Manufacturing, 111–131 (2006)CrossRefGoogle Scholar
  10. 10.
    Centre d’Activitats Regionals per a la Producció Neta, Pla d’Acció de la Mediterrània: Pollution Prevention Opportunities in the Tanning Sector Industry Within the Mediterranean Region: Kit. Regional Activity Center for Cleaner Production, Barcelona (2000)Google Scholar
  11. 11.
    Sivakumar, V., Swaminathan, G., Rao, P.G., Muralidharan, C., Mandal, A.B., Ramasami, T.: Use of ultrasound in leather processing industry: effect of sonication on substrate and substances–new insights. Ultrasonics Sonochemistry 17, 1054–1059 (2010)CrossRefGoogle Scholar
  12. 12.
    Thanikaivelan, P., Rao, J.R., Nair, B.U., Ramasami, T.: Progress and recent trends in biotechnological methods for leather processing. Trends in Biotechnology 22, 181–188 (2004)CrossRefGoogle Scholar
  13. 13.
    European Commission: Integrated pollution prevention and control (IPPC). Reference document on best available techniques for the tanning of hides and skins (2009)Google Scholar
  14. 14.
    Graells, M., Espuña, A., Puigjaner, L.: Optimization of process operations in the leather industry. Computers & Chemical Engineering 16, S221–S228 (1992)CrossRefGoogle Scholar
  15. 15.
    Rippin, D.T.: Current Status and Challenges of Batch Processing Systems Engineering. In: Reklaitis, G., Sunol, A., Rippin, D.T., Hortaçsu, Ö. (eds.) Batch Processing Systems Engineering, pp. 1–19. Springer, Heidelberg (1996)Google Scholar
  16. 16.
    Chokshi, N., McFarlane, D.: A distributed architecture for reconfigurable control of continuous process operations. Journal of Intelligent Manufacturing 19, 215–232 (2008)CrossRefGoogle Scholar
  17. 17.
    Wooldridge, M.J.: Introduction to Multiagent Systems. John Wiley & Sons, Inc., New York (2001)Google Scholar
  18. 18.
    Bordini, R.H., Wooldridge, M., Hübner, J.F.: Programming Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons (2007)Google Scholar
  19. 19.
    Metzger, M., Polakow, G.: A Survey on Applications of Agent Technology in Industrial Process Control. IEEE Transactions on Industrial Informatics 7, 570–581 (2011)CrossRefGoogle Scholar
  20. 20.
    Bussmann, S., McFarlane, D.C.: Rationales for Holonic Manufacturing Control. In: Proc. of Second Int. Workshop on Intelligent Manufacturing Systems, pp. 177–184 (1999)Google Scholar
  21. 21.
    Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37, 255–274 (1998)CrossRefGoogle Scholar
  22. 22.
    Leitão, P., Restivo, F.: ADACOR: A holonic architecture for agile and adaptive manufacturing control. Computers in Industry 57, 121–130 (2006)CrossRefGoogle Scholar
  23. 23.
    Smith, R.G.: The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver. IEEE Transactions on Computers C-29, 1104–1113 (1980)CrossRefGoogle Scholar
  24. 24.
    Shen, W.: Distributed manufacturing scheduling using intelligent agents. IEEE Intelligent Systems 17, 88–94 (2002)CrossRefGoogle Scholar
  25. 25.
    Leitão, P.: A holonic disturbance management architecture for flexible manufacturing systems. International Journal of Production Research 49, 1269–1284 (2011)CrossRefGoogle Scholar
  26. 26.
    Lepuschitz, W., Koppensteiner, G., Barta, M., Nguyen, T.T., Reinprecht, C.: Implementation of automation agents for batch process automation. In: 2010 IEEE International Conference on Industrial Technology (ICIT), pp. 524–529 (2010)Google Scholar
  27. 27.
    Hottinger, W.: New advances in tannery logistics and automation. Journal of the American Leather Chemists Association 98, 425–430 (2003)Google Scholar
  28. 28.
    Khan, D.A., Mushtaq, S., Khan, F.A., Khan, M.Q.A.: Toxic effects of chromium on tannery workers at Sialkot (Pakistan). Toxicol. Ind. Health (2012)Google Scholar
  29. 29.
    Heidemann, E.: Fundamentals of Leather Manufacture. Eduard Roether (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sergiu-Adrian Guţă
    • 1
  • Ioan Dumitrache
    • 1
  • Duncan McFarlane
    • 2
  • Tariq Masood
    • 2
  1. 1.Department of Automatic Control and Systems EngineeringUniversity Politehnica of BucharestBucharestRomania
  2. 2.Distributed Information & Automation Laboratory, Institute for ManufacturingUniversity of CambridgeCambridgeUK

Personalised recommendations