Advertisement

A Multi-Agent System for Modelling Urban Transport Infrastructure Using Intelligent Traffic Forecasts

  • Abdallah Namoun
  • César A. Marín
  • Bart Saint Germain
  • Nikolay Mehandjiev
  • Johan Philips
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8062)

Abstract

This paper describes an integrated approach for modeling transport infrastructure and optimising transport in urban areas. It combines the benefits of a multi-agent system, real time traffic information, and traffic forecasts to reduce carbon-dioxide emissions and offer flexible intermodal commuting solutions. In this distributed approach, segments of different modes of transport (e.g. roads, bus/tram routes, bicycle routes, pedestrian paths) are simulated by intelligent transport agents to create a rich multi-layer transport network. Moreover, a user agent enables direct interaction between commuters’ mobile devices and the multi-agent system to submit journey requests. The approach capitalises on real-time traffic updates and historical travel patterns, such as CO2 emissions, vehicles’ average speed, and traffic flow, detected from various traffic data sources, and future forecasts of commuting behaviour delivered via a traffic radar to calculate intermodal route solutions whilst considering commuter preferences.

Keywords

Multi-agent system traffic forecasts transport infrastructure path finding dijkstra algorithm A* algorithm intermodal route guidance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
  3. 3.
    Adler, J.L., Blue, V.J.: A cooperative multi-agent transportation management and route guidance system. Transportation Research Part C: Emerging Technologies 10(5-6), 433–454 (2002)CrossRefGoogle Scholar
  4. 4.
    Sislak, D., Rehak, M., Pechoucek, M.: A-globe: Multi-Agent Platform with Advanced Simulation and Visualization Support. In: Web Intelligence. IEEE Computer Society (2005)Google Scholar
  5. 5.
    Garcia-Serrano, A.M., Vioque, D.T., Carbone, F., Mendez, V.D.: FIPA-compliant MAS development for road traffic management with a knowledge-based approach: The TRAKC-R agents. In: Proceedings of Challenges Open Agent Systems Workshop, Melbourne, Australia (2003)Google Scholar
  6. 6.
    Hernandez, J.Z., Ossowski, S., Garcia-Serrano, A.: Multiagent architectures for intelligent traffic management systems. Transportation Research Part C: Emerging Technologies 10(5), 473–506 (2002)CrossRefGoogle Scholar
  7. 7.
    Wooldridge, M.J.: Introduction to Multiagent Systems. John Wiley & Sons, Inc., New York (2001)Google Scholar
  8. 8.
    Chen, B., Cheng, H.H.: A Review of the Applications of Agent Technology in Traffic and Transportation Systems. IEEE Transactions on Intelligent Transportation Systems 11(2), 485–497 (2010)CrossRefGoogle Scholar
  9. 9.
    Roozemond, D.A.: Using intelligent agents for pro-active, real-time urban intersection control. European Journal of Operational Research 131(2), 1, 293–301 (2001)CrossRefGoogle Scholar
  10. 10.
    Belmonte, M.V., Pérez-de-la-Cruz, J.L., Triguero, F.: Ontologies and agents for a bus fleet management system. Expert Systems with Applications 34(2), 1351–1365 (2008)CrossRefGoogle Scholar
  11. 11.
    Shi, X., Xu, J., Xu, Y., Song, J.: A simulation study on agent-network based route guidance system. Intelligent Transportation Systems, 248–253 (2005)Google Scholar
  12. 12.
    Li, R., Shi, Q.: Study on integration of urban traffic control and route guidance based on multi-agent technology. IEEE Intelligent Transportation Systems 2(12-15), 1740–1744 (2003)Google Scholar
  13. 13.
    Fan, D., Shi, P.: Improvement of Dijkstra’s algorithm and its application in route planning. In: Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 4, pp. 1901–1904 (2010)Google Scholar
  14. 14.
    Cao, W., Shi, H., Zhu, S., Zhu, B.: Application of an Improved A* Algorithm in Route Planning. In: WRI Global Congress on Intelligent Systems, GCIS 2009, vol. 1, pp. 253–257 (2009)Google Scholar
  15. 15.
    Panait, L., Luke, S.: Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems 11(3), 387–434 (2005)CrossRefGoogle Scholar
  16. 16.
    Bazzan, A.L.C., de Oliveira, D., Klügl, F., Nagel, K.: To adapt or not to adapt – consequences of adapting driver and traffic light agents. In: Tuyls, K., Nowe, A., Guessoum, Z., Kudenko, D. (eds.) Adaptive Agents and Multi-Agent Systems III. LNCS (LNAI), vol. 4865, pp. 1–14. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Hernandez, J.Z., Ossowski, S., Garcıa-Serrano, A.: Multiagent architectures for intelligent traffic management systems. Transportation Research Part C: Emerging Technologies 10(5-6), 473–506 (2002)CrossRefGoogle Scholar
  18. 18.
    Basile, F., Carbone, C., Chiacchio, P., Boel, R.K., Avram, C.C.: A hybrid model for urban traffic control. In: 2004 IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1795–1800 (2004)Google Scholar
  19. 19.
    Tomás, V.R., García, L.A.: Agent-Based management of non urban road meteorological incidents. In: Pěchouček, M., Petta, P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS (LNAI), vol. 3690, pp. 213–222. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Chen, B., Cheng, H.H., Palen, J.: Integrating mobile agent technology with multi-agent systems for distributed traffic detection and management systems. Transportation Research Part C: Emerging Technologies 17(1), 1–10 (2009)CrossRefGoogle Scholar
  21. 21.
    Wang, F.Y.: Agent-based control for networked traffic management systems. IEEE Intelligent Systems 20(5), 92–96 (2005)CrossRefGoogle Scholar
  22. 22.
    Wahle, J., Bazzan, A.L.C., Klugl, F., Schreckenberg, M.: The impact of real-time information in a two-route scenario using agent-based simulation. Transp. Res. Part C: Emerging Technol. 10(5/6), 399–417 (2002)CrossRefGoogle Scholar
  23. 23.
    Meignan, D., Simonin, O., Koukam, A.: Simulation and evaluation of urban bus-networks using a multiagent approach. Simul. Model. Pract. Theory 15(6), 659–671 (2007)CrossRefGoogle Scholar
  24. 24.
    Kukla, R., Kerridge, J., Willis, A., Hine, J.: PEDFLOW: Development of an autonomous agent model of pedestrian flow. Transp. Res. Rec. 1774, 11–17 (2001)CrossRefGoogle Scholar
  25. 25.
    Carpenter, M., Mehandjiev, N.: An Agent based Approach for Balancing Commuter Traffic. In: Proceedings of 19th IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises (WETICE 2010), Larissa, Greece (2010)Google Scholar
  26. 26.
    Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37(3), 255–274 (1998)CrossRefGoogle Scholar
  27. 27.
    Holvoet, T., Valckenaers, P.: Exploiting the Environment for Coordinating Agent Intentions. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 51–66. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  28. 28.
    Verstraete, P., Saint Germain, B., Valckenaers, P., Van Brussel, H., Van Belle, J., Hadeli: Engineering manufacturing control systems using PROSA and delegate MAS. International Journal of Agent-Oriented Software Engineering 2(1), 62–89 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Abdallah Namoun
    • 1
  • César A. Marín
    • 1
  • Bart Saint Germain
    • 2
  • Nikolay Mehandjiev
    • 1
  • Johan Philips
    • 2
  1. 1.Manchester Business SchoolUniversity of ManchesterManchesterUnited Kingdom
  2. 2.Department of Mechanical EngineeringKU LeuvenLeuvenBelgium

Personalised recommendations